APPENDIX B

- **B-1 RESULTS OF SOIL VAPOR ANALYSES**
- **B-2 CHAIN-OF-CUSTODY FORMS**
- B-3 DAILY OPENING, CLOSING, AND CONTINUING CALIBRATION VERIFICATION REPORTS

APPENDIX B-1

RESULTS OF SOIL VAPOR ANALYSES

Mr. Jay Robinson Geofon 22632 Golden Springs Drive Suite 270 Diamond Bar, CA 91765

SUBJECT: DATA REPORT – JET PROPULSION LAB – 4800 OAK GROVE DRIVE – PASADENA, CA - GEOFON PROJECT #04-4428.10

HP Labs Project # GF0081803-L6

Mr. Robinson:

Please find enclosed a data report for the above referenced location. Soil vapor samples were analyzed on-site in DOHS certified mobile laboratory (CERT #1561).

Project Summary

Soil vapor from 105 points was analyzed for:

- volatile halogenated hydrocarbons by EPA Method 8260
- volatile aromatic hydrocarbons (BTEX) by EPA Method 8260

The samples were received on-site in appropriate containers with appropriate labels, seals, and chain-of-custody documentation.

Project Narrative

The results for all analyses and required QA/QC analyses are summarized in the enclosed tables. All calibrations, blanks, surrogates, and spike recoveries fulfill quality control criteria. No data qualifiers (flags) apply to any of the reported data.

HP Labs appreciates the opportunity to provide analytical services to Geofon on this project. If you have any questions relating to this data or report, please do not hesitate to contact us.

Sincerely.

Ms. Tamara Davis
Lab Director

HP Labs Project #GF081803-L6

INSTRUMENT: AGILENT 6850 GC / 6973 MASS SPECTROMETER VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Melhod 8260) ANALYSES OF SOIL VAPOR SOIL VAPOR DATA IN UG/L-VAPOR

SOIL VAPOR DATA IN UG/L-VAPOR														
	AMBJENT BLANK	SVW12- VPA-001	SVW12- VPC-002	SVW31- VPA-003	SVW31- VPB-004	SVW31- VPC-005	SVW31- VPD-006	SVW31- VPE-007	SVW30- VPA-008	SVW30- VPB-009	SVW30-VPB-	SVW30- VPC-011	SVW30-	SVW30-
DATE	08/18/03	08/16/03	08/18/03	08/18/03	08/18/03	08/18/03	08/18/03	08/18/03	08/18/03	08/18/03	08/18/03	08/48/03	20/06/200	2007
ANALYSIS TIME	8:13	8:53	9:19	9:43	10:07	10:31	10:55	11:19	11:43	12:07	12-32	13:37	14.04	44.36
SAMPLING DEPTH (feet)	ı	20	8	29	32	45	55	65	1,	2 8	30.5	. P	£ 6	5.4. 8.
VOLUME WITHDRAWN (cc)	ı	140	300	140	200	240	580	320	. 128	180	240	220	3 5	s ž
VOLUME INJECTED	20	20	20	20	20	20	50	5	2	3 8	;	3 6	3 5	25 05
DILUTION FACTOR	0.05	0.05	0.05	90'0	0.05	0.05	0.05	0.05	0.05	0.05	50.0	0.05	0.05	0.05
													2	6
CARBON TETRACHLORIDE	P	ρu	Б	P	рu	pu	밑	몯	g	g	þl	50	5	5
CHLOROETHANE	5	B	2	2	9	PL	2	둳	2	5	! <u>P</u>	2	2	2 2
CHLOROFORM	멑	ы	9	p	פ	ą	5	2	5	2	2	2	! 12	2 2
1,1-DICHLORO ETHANE	5	ā	Б	ē	g	g	밑	2	2	2	2	2	! 2	2
1,2-DICHLORO ETHANE	臣	pu	5	ē	2	g	2	B	5	밑	2	<u> </u>	2 2	2 2
1,1-DICHLORO ETHENE	5	맏	рı	Ē	5	ğ	2	멑	멑	5	2	· 'E	! E	2 2
CIS-1,2-DICHLORO ETHENE	ē	pu	ā	Þ	2	2	2	Ē	2	2	12	9	2 2	2 2
TRANS-1,2-DICHLORO ETHENE	P P	9	ď	g	ē	g	2	<u>1</u> 2	멷	5	2	2	! TE	2
DICHLOROMETHANE	멑	g	5	ā	5	P	2	'	2	5	2	2	: TE	2
TETRACHLORO ETHENE	멑	5	밑	5	멷	P	밑	3	5	2	Đ	2	1 2	2
1,1,1,2-TETRACHLORO ETHANE	5	2	2	2	멀	2	5	5	ē	5	19	<u>a</u>	g	pu
1.1,2,2-TETRACHLORO ETHANE	ğ	5	P	5	힏	뒫	몯	2	밑	밑	ŋ	5	2	2
1,1,1-TRICHLORO ETHANE	9	믿	pu	멀	pu	ы	2	2	밑	þ	ug	2	.	2
1,1,2-TRICHLORO ETHANE	2	2	2	2	5	ы	덜	멸	멑	맏	5	2	19	2
TRICHLORO ETHENE	밑	5	힏	þ	믿	5	5	Б	P	5	5	2	2	2
VINYL CHLORIDE	ē	믿	þ	2	ŋ	P	ē	말	9	2	2	2	! 'E	2
TRICHLOROFLUOROMETHANE (FR11)	þ	Бī	5	멷	ğ	말	2	밀	2	2	2	2	2	2
DICHLORODIFLUOROMETHANE (FR12)	2	P	밑	힏	믿	g	5	5	ā	2	2	2	2	2
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	рu	рu	ы	pu	pu	nď	5	B	5	2	2	2	2	2
BENZENE	힏	믿	pu	ы	pu	nd	2	돧	됟	2	þ	pu	2	2
CHLOROBENZENE	5	2	ŋ	29	멑	P	P	pr.	5	핃	5	5	2	2
ETHYLBENZENE	만	<u>a</u>	2	<u>3</u>	2	٦	2	9	됟	둳	5	ē	5	밑
TOLUENE	2	ē	믿	2	힏	돧	2	5	5	멑	臣	9	2	ē
m&p-XYLENES	ğ	P	2	멑	밑	돧	5	2	ā	2	12	g	þ	9
o-XYLENE	uģ	p	뒫	pu	ы	рц	Б	멑	ē	Ę	9	ā	2	<u>'</u>
SURROGATES (75-125% RECOVERY)														
DIBROMODIFLUOROMETHANE	102%	105%	106%	108%	109%	111%	111%	112%	112%	112%	115%	116%	111%	111%
1,2-DICHLOROETHANE-d4	%66	104%	105%	108%	105%	109%	109%	108%	107%	112%	111%	114%	106%	11.8
4 BROMOFLUCKU BENZENE	102%	Ŧ	103%	%66	100%	%66	101%	102%	%66	100%	100%	95%	%26	%86
LINCIPCION A TA CHECCHEO FON WHEADIGN ON	LO FINE	00000	01041 001											

HP Labs Project #GF081803-L6

INSTRUMENT: AGILENT 6850 GC / 5973 MASS SPECTROMETER VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8260) ANALYSES OF SOIL VAPOR SOIL VAPOR DATA IN UG/L-VAPOR

	AMBIENT	SVWS- VPB-014	VPB-015	VPC-016	VPA-017	VPB-018	VPC-019	SVW/-	SVW7- VPB-021	SVW4- VPB-022	SVW4-VPB- 023 Dup	VPD-024
DATE	08/19/03	08/19/03	08/19/03	08/19/03	08/10/02	08/10/02	00/10/100	00/10/00	0000000	60,00,00	4000000	
ANALYSIS TIME	7-54	40.6	25.0	200	cover no	40.00	2001	50/81/90	50/61/90	50/18/03	50/61/80	08/19/03
SAMPLING DEDTH (foot)	5	3	5 2	2 (e:01	50:01	10:2/	05:01	11:15	11:39	12:03	13:16
	ı	ח	5	55	9	83	6	8	32	20	8	26
VOLUME WITHDRAWN (cc)	:	96	144	192	100	176	220	140	200	140	200	284
VOLUME INJECTED	20	20	20	20	8	20	50	70	8	20	20	8
DILUTION FACTOR	0.05	0.05	90.0	0,05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
CACCALL TETO ACTUAL CONTRACT												
CARBON JEI RACHLORIDE	2	1.7	5	2	9	2.9	2.9	3	2	2	멑	5
CHLOROETHANE	9	5	딛	pd	3	5	P	5	밀	2	g	þ
CHLOROFORM	g	밑	5	멑	2	됟	2	2	2	5	ď	5
1,1-DICHLORO ETHANE	g	2	2	밑	2	2	ğ	5	2	2	2	2
1,2-DICHLORO ETHANE	5	둳	2	멑	5	5	몯	5	5	몯	2	2
1,1-DICHLORO ETHENE	5	9	5	멑	2	5	2	돧	5	멷	2	5
CIS-1,2-DICHLORO ETHENE	돧	9	2	ē	5	밑	몯	5	몯	둳	2	2
TRANS-1,2-DICHLORO ETHENE	p	2	5	5	2	Б	5	2	5	밑	P	5
DICHLOROMETHANE	돧	5	9	DQ.	þ	멑	돧	5	됟	2	2	2
TETRACHLORO ETHENE	밑	밑	3	9	2	5	5	힏	5	5	2	5
1,1,1,2-TETRACHLORO ETHANE	P	5	Ē	5	P	9	밑	Ę	2	ā	2	9
1,1,2,2-TETRACHLORO ETHANE	5	믿	5	몯	5	Ę	5	덛	12	5	B	5
1,1.1-TRICHLORO ETHANE	달	밑	5	멑	2	3	돧	5	5	5	Б	5
1,1,2-TRICHLORO ETHANE	9	5	믿	잗	5	됟	밑	2	밑	2	ē	5
TRICHLORO ETHENE	g	둳	2	돧	2	됟	2	5	2	92	28	2.5
VINYL CHLORIDE	2	5	됟	pu	5	5	9	5	2	2	먇	5
TRICHLOROFLUOROMETHANE (FR11)	2	밑	5	밑	5	2	밑	2	2	2	g	9
	멑	2	2	2	5	5	2	5	2	2	ğ	ğ
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	멑	ри	ρľ	pu	돧	рu	2	5	2	5	2	5
BENZENE	돧	5	рu	pu	ы	Б	5	2	됟	밀	pu	2
CHLUROBENZENE	5	2	2	2	5	2	2	2	2	臣	5	5
EIHYLBENZENE	2	2	3	2	5	밑	멸	5	5	5	5	5
TOLUENE	g	2	9	3	밑	9	5	멑	2	Ē	ը	5
m&p-XYLENES	2	2	2	멑	9	'	5	9	2	Ę	2	5
o-XYLENE	Đ	P	þ	ը	g	pu	рп	þ	' E	9	Ę	2
SURROGATES (75-125% RECOVERY)						•						
DIBROMODIFLUOROMETHANE	110%	103%	111%	115%	114%	115%	115%	115%	121%	115%	119%	110%
1,Z-DICHLOROETHANE-64	110%	100%	107%	113%	113%	111%	111%	110%	118%	112%	114%	105%
* DROMOTLOURO DENZENE	% 0 8	202%	103%	103%	,105%	25%	%26	7070	7000	è	920	3707

HP Labs Project #GF081803-L6

INSTRUMENT: AGILENT 6850 GC / 5973 MASS SPECTROMETER VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8260) ANALYSES OF SOIL VAPOR SOIL VAPOR DATA IN UGAL-VAPOR

SOIL VAPOR DATA IN UG/L-VAPOR	i														
	AMBIENT BLANK	SVW11- VPA-025	SVW32- VPB-026	SVW32- VPD-027	SVW32- VPE-028	SVW32-VPI-SVW32-VPJ 029 030	SVW32-VPJ 030	SVW14- VPA-031	SVW14- VPB-032	SVW17- VPC-033	SVW17-VPC- :	SVW8-VPC- SVW8-VPD- SVW8-VPE- 035 036 037	SVW8-VPD- 8	SVW8-VPE-	SVW13-
DATE	08/20/03	08/20/03	08/20/03	08/20/03	08/20/03	08/20/03	08/20/03	08/20/03	08/20/03	08/20/03	08/20/03	08/20/03	08/20/03	08/20/03	08/20/03
ANALYSIS TIME	6:58	7:48	8:17	8:40	9:04	9:29	9:53	10:17	10:41	11:05	11:29	13:04	12:25	13.40	14:43
SAMPLING DEPTH (feel)		8	40	02	8	180	195	чo	9	æ	38	5 5	2	£ 6	5 6
VOLUME WITHDRAWN (cc)	1	140	220	340	420	780	840	80	100	204	564	260	340	420	140
VOLUME INJECTED	8	20	20	20	20	50	50	50	20	8	50	50	20,	2	2 5
DILUTION FACTOR	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
CADDOM TETOAGE							Ì	ì							
CARBON LETRACHLORIDE	5	5	5	9	5	3.3	2.3	밑	9	29	ρυ	Б	믿	pu	P
CHLOROE I HANE	2	2	Б	5	2	5	9	먇	g	og	g	멀	þ	밑	2
CHLOROFORM	ğ	2	딛	5	믿	p	ğ	g	5	P	Ē	2	2	þ	2
1,1-DICHLORO ETHANE	<u>ē</u>	믿	þ	5	2	둳	2	nď	5	1.2	1.2	2	2	5	2
1,2-DICHLORO ETHANE	g	2	2	5	둳	Ę.	5	5	5	7	8.7	5	5	pu	2
1.1-DICHLORO ETHENE	2	2	9	5	臣	말	멑	2	2	p	٦	ē	Ę	5	P
CIS-1,2-DICHLORO ETHENE	2	5	ď	5	돧	ם	둳	P	5	5	멑	P	P	Ę	P
TRANS-1,2-DICHLORO ETHENE	5	2	ᄝ	5	2	2	둳	핕	멑	돧	٦	5	2	Ы	2
DICHLOROMETHANE	2	2	2	밑	P	5	2	P	5	5	5	밑	ng	밑	12
LETRACHLORO ETHENE	5	5	2	Ę	g	9	멑	5	þ	7.1	6.4	Ę	g	p	Pu
1,1,1,2-TETRACHLORO ETHANE	5	9	2	9	ď	пď	5	먇	멸	pu	5	5	pu	5	og o
1,1,2,2-TETRACHLORO ETHANE	밑	2	5	5	5	믿	맏	P	p	P	2	ğ	5	ē	g
1,1,1-1RICHLORO ETHANE	5	2	5	2	2	P	뒫	밑	5	밑	밑	5	2	5	ğ
1,1,2-I RICHLORO ETHANE	ğ	2	밑	2	믿	P	밑	5	Ę,	4.4	1.0	5	힏	P	Ē
TRICHLORO ETHENE	<u>g</u>	2	P	2	2	2	9	2	3	2.5	2,1	멑	2	9	臣
VINYL CHLORIDE	2	2	밑	2	돧	2	9	멸	5	5	Ð	5	2	ğ	2
IRICHLOROFLUOROMETHANE (FR11)	2	2	5	2	5	돧	ď	<u>5</u>	5	2	ng	þ	2	P	Ş
UICHLORODIFLUOROME (HANE (FR12)	5	몯 '	9	2	2	돧	og D	ᄝ	ē	돧	пģ	Ę	p	5	Ę
1, 1,2-1 RICALORO I RIFLUOROE I HANE (PR113)	8	2	٩	P.	믿	g	2	5	þ	5	P	2	밑	P	5
BENZENE	5	5	5	5	멑	g	2	P	5	110	06	밑	밑	PG PG	2
CHLOROBENZENE	5	5	됟	2	2	2	2	2	멸	5	2	믿	밑	5	밀
EIHYLBENZENE ***:::::::	5	5	2	ď	<u>g</u>	2	밀	둳	g	3.3	2.6	2	밀	멑	5
OLUENE A 15 E E E E	5	9	5	2	5	2	믿	멑	5	1.5	1.2	5	2	밑	ā
B&p.XYLENES	9	g	핕	2	힏	2	멑	P	5	12	9.5	5	ď	<u> </u>	9
o-XYLENE	nđ	2	рu	P	Þ	2	5	둳	9	5	2	2	2	7	
SURROGATES (75-125% RECOVERY)				i										!	
DIBROMODIFLUOROMETHANE	110%	105%	110%	107%	111%	114%	116%	109%	108%	88%	95%	104%	107%	107%	108%
1,2-DICHLOROETHANE-64	103%	104%	108%	105%	107%	112%	112%	109%	109%	85%	93%	102%	104%	105%	106%
4 BROMOFLUORO BENZENE	104%	%26	105%	%86	%66	%/6	100%	110%	107%	116%	113%	103%	102%	104%	101%

ND INDICATES NOT DETECTED AT A DETECTION LIMIT OF 1.0 UG/L-VAPOR FOR EACH COMPOUND ANALYSES PERFORMED ON-SITE IN CA DOHS MOBILE LABORATORY #1561
ANALYSES PERFORMED BY: MARK BURKE
DATA REVIEWED BY: TAMARA DAVIS

HP Labs Project #GF081803-L6

INSTRUMENT: AGILENT 6850 GC / 5973 MASS SPECTROMETER VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8260) ANALYSES OF SOIL VAPOR SOIL VAPOR DATA IN UGAL-VAPOR

OATE CHANGE PRESIDE PR	VPB-042 VPE-043 VPE-044 VPE-045 VPE-045 VPE-045 VPE-045 VPE-045 VPE-045 VPE-045 VPE-045 VPE-045 VPE-046 VPE-046 <t< th=""></t<>
NET	0.0421/03 0.0521/03 0.0521/03 <t< th=""></t<>
Color Colo	847 9:11 10:24 10:00 10:48 11:12 11:36 12:44 13:71 13:31 20 50 55 105 120 140 140 190 20
NE 1936 140 20 50 60 60 60 60 60 60 6	40 60 85 105 120 140 140 140 140 150 150 150 150 150 150 150 150 150 20
100 100	220 300 400 480 540 620 680 860 140 20
10 10 10 10 10 10 10 10	20 20<
NE NO NO NO NO NO NO NO	10.05 0.05
NE NET TO THE TOTAL THE TO	nd nd nd 11 8.8 nd nd nd nd<
NE NE NE NE NE NE NE NE	nd nd nd 11 8.8 nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd nd
NE	nd nd<
NE NE NE NE NE NE NE NE	nd nd nd nd 44 2.5 ng ng ng nd nd<
NE NG	nd nd<
NE NE FRETIS) NE	nd nd<
NE NG	nd nd<
NE	nd nd<
NE NG	113% 116% 117% 116%
NE	nd nd<
NE	nd nd<
NE N	nd nd<
NE nd nd<	nd nd<
NE	nd nd<
Ind	nd nd<
NE (FR11)	nd nd<
NE NE NE NE NE NE NE NE	nd nd nd nd 1.7 1.5 nd nd od nd
NE (FR11)	nd nd<
NE (FR11)	nd nd<
NE (FR12)	nd nd<
DETHANE (FR113)	nd nd 1.5 nd 2.4 2.5 nd nd nd nd n
DVERY Name	nd nd<
OVERY) Ind nd nd <t< td=""><td>nd nd n</td></t<>	nd n
OVERY) Ind nd nd <t< td=""><td>nd nd n</td></t<>	nd n
OVERY) nd nd <th< td=""><td>nd nd n</td></th<>	nd n
OVERY) nd nd <th< td=""><td>nd nd la la</td></th<>	nd la
OVERY) Fig. 104% 105% 103% 109% 113% 116% 117% 116% 117% 116% 117% 110% 110% 109% 104% 104% 104% 104% 104% 104% 104% 104	nd n
OVERY) 104% 105% 103% 105% 113% 116% 117% 115% 117% 117% 117% 117% 117% 117% 117% 117% 117% 110% 104% 104% 104% 104% 104% 10	113% 116% 117% 115% 117% 119% 115% 117% 112% 119% 113% 117% 118% 118% 118% 118% 118% 118% 118
E 104% 105% 103% 109% 113% 116% 117% 115% 117% 116% 117% 116% 117% 116% 117% 116% 117% 110% 104% 104% 104% 106% 100% 100% 100% 100% 100% 100% 104% SITE IN CA DOHS MOBILE LABORATORY #1361 MARK BURKE	113% 116% 117% 115% 117% 119% 115% 117% 112% 118% 118% 118% 118% 118% 118% 118
104% 103% 98% 104% 113% 113% 117% 110% 110% 110% 110% 110% 104% 104% 104	113% 112% 113% 110% 110% 112% 111% 104% 116% 116% 198% 97% 94%
108% 104% 104% 104% 104% 104% 106% 100% 100% 104% 104% 104% 104% 104% 104	98% 104% 100% 100% 104% 97% 97% 98% 97% 94%
	Wish Rish Rish Rish Rish Rish Rish Rish R
ANALYSES PERFORMED ON SITE IN CA DOHS MOBILE LABORATORY #1561 ANALYSES PERFORMED BY: MARK BURKE	
ANALYSES PERFORMED BY: MARK BURKE	11561
	į
DATA REVIEWED BY: TAMARA DAVIS	

HP Labs Project #GF081803-L6

INSTRUMENT: AGILENT 8850 GC / 5973 MASS SPECTROMETER VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Melhod 8260) ANALYSES OF SOIL VAPOR SOIL VAPOR DATA IN UGIL-VAPOR

						dna sco	2000		2000	VPH-053	VPA-064	VPB-065	VPI-066	20-5-2
DATE 08	08/22/03	08/22/03	08/22/03	08/22/03	08/22/03	08/22/03	08/22/03	08/22/03	08/22/03	08/22/03	08/22/03	C0,000	08/22/03	20/20/00
ANALYSIS TIME	2:00	7:25	7:50	8:14	8:39	9:02	9.56	9-50	10:13	10:37	11:01	42,25	47.56	13:04
SAMPLING DEPTH (feet)	:	08	140	2	S	6	505	118	2 0	2 2	2 6	25.25	180	2.5
VOLUME WITHDRAWN (cc)	;	380	620	5 5	380	440	94	520	620	20.2	3 5	5 5	3 5	2 6
VOLUME INJECTED	8	20	20	20	20	20	2	2	5	<u> </u>	<u> </u>	2, 6	3 5	8 8
DILUTION FACTOR	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
CARBON TETRACHI OBIDE	1	1		1			7							
CANDON IEINACHLORIDE	e .	₽ '	2	D	2	2	2	2	2.2	6 .	2	D.	4	5
CHLOROETHANE	5	2	5	핃	5	p	달	D.	臣	p	됟	9	ב	5
CHLOROFORM	2	g	P	p	P	5	Ę	Þ	5. 5.	1.0	돧	þ	g	5
1,1-DICHLORO ETHANE	5	5	þ	2	P	2	g	g	밑	pu	둳	2	2	2
1,2-DICHLORO ETHANE	2	2	밑	힏	5	2	g	ы	ы	Б	2	2	2	5
1,1-DICHLORO ETHENE	2	2	g	돧	Б	5	P	p	2	ы	둳	2	2	2
CIS-1,2-DICHLORO ETHENE	2	2	2	2	5	멑	P	Б	Pu	멑	12	2	5	5
TRANS-1,2-DICHLORO ETHENE	2	멑	9	2	핃	5	멑	g	2	рu	뒫	멑	2	2
DICHLOROMETHANE	2	2	<u>g</u>	ē	5	5	P	ы	2	ы	臣	멑	2	5
TETRACHLORO ETHENE	2	5	ď	þ	2	돧	5	ą	P	ρυ	ри	2	멑	5
1.1.1,2-TETRACHLORO ETHANE	5	2	5	밑	5	5	2	ğ	밑	þ	5	2	ē	5
1,1,2,2-TETRACHLORO ETHANE	믿	5	2	þ	밑	2	2	pu	P	5	ng	2	밑	5
1,1,1-TRICHLORO ETHANE	5	됟	2	ğ	2	5	멑	5	2	5	5	멷	ē	2
1,1,2-TRICHLORO ETHANE	5	2	돧	ā	밑	달	P	2	2	g	5	핃	B	5
TRICHLORO ETHENE	밑	5	밀	3.1	밑	2	힏	밑	P	9	Ę	5	1:1	ē
VINYL CHLORIDE	5	2	5	שַ	밑	멑	5	힏	ğ	ק	2	12	힏	5
TRICHLOROFLUOROMETHANE (FR11)	5	2	5	2	9	2	Ę	P	ъď	ğ	믿	밑	5	2
DICHLORODIFLUOROMETHANE (FR12)	밑	5	핃.	2	9	g	p	1.1	5	5	멑	5	5	5
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	пđ	рu	2.1	Б	pu	ы	g	pu	pu	pu	pu	рu	Đ	5
BENZENE	, <u>3</u>	2	5	2	2	3	멑	2	믿	ы	5	밑	υ	됟
CHICKOBENZENE THISE STRIPPIN	E .	2	ם י	2	2	5	2	2	2	2	2	ը	9	돧
CITTLEENZENE	2	E :	<u> </u>	둳 .	2	5	<u> </u>	2	2	p	2	멑	9	둳
	₽.	Ē,	E '	2	2	2	9	5	2	2	힏	g	2	2
map:ATLENES	5	Ē	5	2	2	2	jo J	밑	힏	됟	9	g	ď	2
O-AYLENE SHODOOATTO (75 405% DECONFONS	2	2	밀	2	밀	2	2	밑	2	둳	Б	2	ģ	2
DIBROMODIFLUOROMETHANE	110%	107%	112%	114%	117%	121%	118%	114%	120%	116%	117%	115%	115%	120%
ш	%00L	101% %F01	113%	104%	111% 2070	116%	114%	110%	112%	110%	112%	113%	106%	118%
	200	0/00	000	200	2	8 25	200	800	800	805	S C	%H5	% KD	%/6

HP Labs Project #GF081803-L6

INSTRUMENT: AGILENT 6850 GC / 5873 MASS SPECTROMETER VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8260) ANALYSES OF SOIL VAPOR SOIL VAPOR DATA IN UGIL-VAPOR.

SOIL VAPOR DATA IN UG/L-VAPOR																
	AMBIENT	SVW36- VPA-068	SVW36- VPB-069	SVW36-VPB- 070 Dup	SVW36- VPC-071	SVW36- VPD-072	SVW36- VPE-073	SVW27- VPA-074	SVW27- VPB-075	SVW27- VPC-076	SVW27- VPD-077	SVW27- VPE-078	SWW27- VPF-079	SVW27- VPG-080	SVW27-VPG- 081 Dup	SVW27- VPI-082
DATE	08/25/03	08/25/03	08/25/03	08/25/03	08/25/03	08/25/03	08/25/03	08/25/03	08/25/03	08/25/03	08/25/03	08/25/03	08/25/03	08/25/03	08/25/03	08/25/03
ANALYSIS TIME	7:55	8:39	9:04	9:29	9 53	10:18	10:42	11:06	11:29	<u>:</u>	12:18	13:25	13:49	14:14	14:38	15:01
SAMPLING DEPTH (feet)	ı	20	35	35	55	75	85	20	35	8	88	9	120	140	140	180
VOLUME WITHDRAWN (cc)	ı	140	200	260	280	360	428	140	200	300	400	460	540	620	680	780
VOLUME INJECTED	20	8	8	20	20	8	20	20	20	20	20	20	20	20	20	20
DILUTION FACTOR	0.05	0,05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
CARRON TETRACHI OPIOE	1	2	1	7	7		7	7	;			;		١		ٳ
CHI OPOETHANE	2	2 7	2 3	2 3	2 5	₽ 1	2 7	2 7	2 7	P 1	2 7	2 ?	2 :	S.	2.2	7.7
CALCACIONA	₽.	2	Ē.	5	D.	2	5	2	2	2	2	5	5	2	5	5
CHLOROFORM	2	2	2	5	5	밑	2	5	힏	돧	밑	달	p	2	5	1:1
1,1-DICHLORO ETHANE	5	5	5	5	5	밑	Ъ	2	5	맏	2	2	B	2	р	5
1,2-DICHLORO ETHANE	5	5	臣	2	þ	밑	2	p	рu	멑	2	5	pg	5	5	5
1,1-DICHLORO ETHENE	밑	P	9	5	þ	밑	2	ē	рĮ	밑	5	5	ē	핃	5	P
CIS-1,2-DICHLORO ETHENE	5	모	뎓	5	5	밑	P	ğ	ы	Б	2	2	5	ᄝ	5	5
TRANS-1,2-DICHLORO ETHENE	5	멑	잗	P	5	ы	멑	5	2	Έ	밀	됟	ē	멑	5	ē
DICHLOROMETHANE	g	pu	Б	5	P	pu	2	둳	5	nd	2	2	2	5	힏	멑
TETRACHLORO ETHENE	5	9	2	P	ם	힏	밑	5	5	ng	5	2	몯	2	ē	둳
1,1,1,2-TETRACHLORO ETHANE	5	pu	ы	P	90	5	2	2	5	9	5	2	됟	Ę	5	P
1,1,2.2-TETRACHLORO ETHANE	5	ğ	g	P	9	덜	9	P	5	Ð	5	ā	2	말	p	모
1,1.1-TRICHLORO ETHANE	5	p	p	þ	ā	5	9	ē	P	5	5	g	2	5	Đ	P
1,1,2-TRICHLORO ETHANE	p	P	pu	рu	ğ	5	p	잗	Þ	19	2	ē	밑	Ę	ē	5
TRICHLORO ETHENE	5	ק	þ	1.0	5	5	5	P	밑	멑	멑	ē	P	2	5	5
VINYL CHLORIDE	9	ğ	g	pu	5	힏	pu	P	P	5	ᄝ	5	2	5	5	Ē
TRICHLOROFLUOROMETHANE (FR11)	2	2	P	p	5	P	19	P	ы	5	덛	ē	밑	2	PC	ē
DICHLORODIFLUOROMETHANE (FR12)	2	2	g	Б	멸	5	nd	P	5	5	Ę	5	밑	12	PC	nđ
1,1,2 TRICHLOROTRIFLUOROETHANE (FR113)	밀	멸	Б	р	pu	pu	pu	pu	pu	ы	믿	pu	pu	밑	þ	nď
BENZENE	pu	g	5	Pu	υq	pu	2	ри	pu	pu	맏	밑	밑	밑	힏	ğ
CHLOROBENZENE	5	Ð	P	2	9	5	밑	2	5	g	þ	5	5	pu	5	ğ
ETHYLBENZENE	P	ā	맏	2	뎔	pu	5	5	5	g	2	5	2	ē	P	5
TOLUENE	5	ğ	P	밑	ē	p	밑	5	ď	p	P	B	P	D D	Б	5
m&p-XYLENE\$	Б	nđ	먇	<u>e</u>	5	P	밑	5	<u>e</u>	g	þ	5	2	p	5	ā
O-XYLENE	pu	pq	힏	nď	pu	먇	멑	臣	3	Б	臣	2	Þ	5	2	Ē
SURROGATES (75-125% RECOVERY)																
DIBROMODIFLUOROMETHANE	105%	108%	105%	113%	110%	113%	112%	112%	112%	115%	114%	113%	113%	114%	113%	115%
1,2-DICHLOROETHANE-d4	101%	103%	105%	109%	108%	105%	111%	108%	108%	112%	110%	105%	109%	109%	114%	114%
4 BROMOFLUORO BENZENE	100%	101%	100%	101%	100%	88%	95%	94%	%26	83%	93%	100%	95%	84%	%98	100%

HP Labs Project #GF081803-L6

INSTRUMENT: AGILENT 6850 GC / 5973 MASS SPECTROMETER VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Melhod 8260) ANALYSES OF SOIL VAPOR SOIL VAPOR DATA IN UGIL-VAPOR

	AMBIENT BLANK	SVW38- VPD-083	SVW38- VPF-084	SVW38- VPJ-085	SVW37- VPB-086	SVW37- VPE-087	SVW37- VPH-088	SVW37-VPH- 089 Dup	SVW37- VPI-090	SVW37- VPJ-091
DATE	08/27/03	08/27/03	08/27/03	08/27/03	08/27/03	09/27/03	08/27/03	08/27/03	08/27/03	08/27/03
ANALYSIS TIME	8:42	9:07	9:38	10:03	10:27	10:53	11:18	11:43	12:09	12:34
SAMPLING DEPTH (feet)	;	80	110	170	40	9	155	155	170	185
VOLUME WITHDRAWN (cc)	1	380	200	740	220	460	9	740	740	800
VOI,UME INJECTED	8	8	20	20	8	23	8	20	8	20
DILUTION FACTOR	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
						i				
CARBON TETRACHLORIDE	9	Б	2	믿	5	5	돧	рu	밑	υд
CHLOROETHANE	5	밑	5	5	몯	핕	핃	g	5	5
CHLOROFORM	uğ	пd	5	믿	2	2	1.1	3	밑	<u>a</u>
1,1-DICHLORO ETHANE	<u>a</u>	Б	5	5	멑	돧	몯	ag ag	25	<u>e</u>
1,2-DICHLORO ETHANE	ğ	ы	5	믿	2	2	돧	g	밑	<u>g</u>
1,1-DICHLORO ETHENE	2	P	5	2	멑	<u>P</u>	2	5	5	9
CIS-1,2-DICHLORO ETHENE	2	9	2	믿	2	9	돧	19	밑	5
TRANS-1,2-DICHLORO ETHENE	2	힏	5	2	밀	9	믿	5 G	5	멸
DICHLOROMETHANE	5	5	5	돧	밀	핕	2	ng ug	덜	טַר
TETRACHLORO ETHENE	5	9	2	2	2	ē	됟	og	밑	멸
1,1,1,2-TETRACHLORO ETHANE	5	뒫	5	2	2	믿	됟	g	5	<u>g</u>
1.1,2,2-TETRACHLORO ETHANE	2	Б	멸	믿	5	2	돧	ng	밑	둳
1.1,1-TRICHLORO ETHANE	2	р	2	2	돧	g	몯	ng	밑	밀
1,1,2-TRICHLORO ETHANE	2	Ē	5	2	Ę	2	핃	g	덜	ā
TRICHLORO ETHENE	2	밑	돧	5	5	'n	짇	g	5	лд
VINYL CHLORIDE	2	믿	5	2	2	g	멑	nd	5	<u>a</u>
TRICHLOROFLUOROMETHANE (FR11)	5	р	2	1.8	돧	5	6 .	1.6	2	멸
DICHLORODIFLUOROMETHANE (FR12)	2	Ę	5	됟	2	2	믿	ug	덜	9
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	5	ы	Б	5	PL	P	Б	nd	рu	рц
BENZENE	2	5	2	5	Б	밑	2	pu	밑	пd
CHLOROBENZENE	2	2	2	5	2	9	2	9	5	<u>P</u>
ETHYLBENZENE	돧	9	2	말	힏	2	2	1	밑	먇
TOLUENE	2	5	2	밀	2	5	2	uğ	2	ը
m&p-XYLENES	2	5	2	5	힏	5	멑	g	2	2
o-XYLENE	E	믿	p	2	믿	pu	pq	nd	pu	PG PG
SURROGATES (75-125% RECOVERY)										
DIBROMODIFLUOROMETHANE	106%	108%	109%	114%	114%	120%	118%	121%	123%	124%
1,2-DICHLOROETHANE-64	106%	119%	102%	108%	111%	115%	109%	113%	114%	117%
4 BROMOFLUORO BENZENE	103%	35%	103%	95%	85%	94%	93%	95%	94%	%26

4 BROMOFLUORO BENZENE 103% 95% 103% 95%
ND INDICATES NOT DETECTED AT A DETECTION LIMIT OF 1.0 UGIL-VAPOR FOR EACH COMPOUND
ANALYSES PERFORMED ON-SITE IN CA DOHS MOBILE LABORATORY #1561
ANALYSES PERFORMED BY: MARK BURKE
DATA REVIEWED BY: TAMARA DAVIS

HP Labs Project #GF081803-L6

INSTRUMENT: AGILENT 6850 GC / 5973 MASS SPECTROMETER VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Melhod 8260) ANALYSES OF SOIL VAPOR SOIL VAPOR DATA IN UGIL-VAPOR

SOIL VAPOR DATA IN UG/L-VAPOR								
٠	AMBIENT BLANK	SVW34- VPE-092	SVW34-VPE- 093 Dup	SVW34- VPF-094	SVW39- VPA-095	SVW39- VPE-096	SVW39- VPF-097	SVW39- VPI-098
DATE	08/28/03	08/28/03	08/28/03	08/28/03	08/28/03	08/28/03	08/28/03	08/28/03
ANALYSIS TIME	7:51	8:18	B;42	9:07	9:31	9:56	10:21	10:46
SAMPLING DEPTH (feet)	1	80	80	92	20	82	001	130
VOLUME WITHDRAWN (cc)	;	380	440	440	140	400	460	580
VOLUME INJECTED	50	50	50	20	20	8	8	20
DILUTION FACTOR	0,05	0,05	0.05	9.05	0.05	0.05	0.05	0.05
CABBON TETBACH OPINE	ě	1	1	3	7	4 7	;	1
	3 7	2	2 7	2 1	2 1	<u>.</u>	,	₽ 1
CHLOROEI HANE	5	5	2	2	Đ	2	2	2
CHLOROFORM	5	2	5	ğ	밑	5	5	Þ
1,1-DICHLORO ETHANE	밑	9	뒫	ğ	5	2	믿	밑
1,2-DICHLORO ETHANE	ы	5	p	9	밀	2	5	Б
1,1-DICHLORO ETHENE	5	5	2	2	5	5	2	Ē
CIS-1,2-DICHLORO ETHENE	5	p.	5	5	5	5	5	5
TRANS-1,2-DICHLORO ETHENE	Б	9	2	2	5	Б	2	뒫
DICHLOROMETHANE	р	p	2	밑	돧	2	5	5
TETRACHLORO ETHENE	P	밑	9	밑	뒫	2	2	5
1,1,1,2-TETRACHLORO ETHANE	ы	5	5	핕	2	5	5	둳
1,1,2,2-TETRACHLORO ETHANE		밑	uq	밑	2	2	멑	됟
1,1,1-TRICHLORO ETHANE	Б	2	g	덛	5	2	3	5
1,1,2-TRICHLORO ETHANE	5	5	1 0	몯	2	5	Ę	5
TRICHLORO ETHENE	5	5	ы	짇	5	2.8	5.2	8.2
VINYL CHLORIDE	Þ	뒫	5	몯	5	ď	9	2
TRICHLOROFLUOROMETHANE (FR11)	2	됟	5	5	5	9	5	2
DICHLORODIFLUOROMETHANE (FR12)	5	5	p	멑	5	<u>g</u>	5	2
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	pu	pu	pu	멑	5	26	25	1.7
BENZENE	ים	힏	ρu	2	2	g	밑	P
CHLOROBENZENE	<u>a</u>	힏	둳	돧	2	g	Ē	믿
ETHYLBENZENE	2	밀	臣	돧	3	ng D	둳	ď
TOLUENE	g	2	멀	멑	9	P	5	ug.
m&p-XYLENES	9	5	5	2	5	밑	5	5
o-XYLENE	ng	nđ	pu	B	nď	ш	пd	pu
SURROGATES (75-125% RECOVERY)								
DIBROMODIFLUOROMETHANE	107%	111%	105%	111%	110%	118%	116%	119%
1,2-DICHLOROETHANE-d4	104%	105%	102%	106%	106%	110%	112%	114%

ND INDICATES NOT DETECTED AT A DETECTION LIMIT OF 1.0 UGAL-VAPOR FOR EACH COMPOUND ANALYSES PERFORMED BY: MARK BURKE
DATA REVIEWED BY: TAMARA DAVIS

%96

94%

%66

%66

HP Labs Project #GF081803-L6

INSTRUMENT: AGILENT 6850 GC / 5973 MASS SPECTROMETER VOLATILE HALOGENATED AND AROMATIC HYDROCARBONS (EPA Method 8260) ANALYSES OF SOIL VAPOR SOIL VAPOR DATA IN UG/L-VAPOR

SOIL VAPOR DATA IN DG/L-VAPOR								
	AMBIENT BLANK	SVW15- VPB-099	SVW15- VPC-100	SVW15- VPD-101	SVW15- VPE-102	SVW6-VPB- 103	SVW6-VPB- 104 Dup	SVW6-VPD- 105
DATE	08/29/03	08/29/03	08/29/03	08/29/03	08/29/03	08/29/03	60/66/80	08/29/03
ANALYSIS TIME	7:40	8:05	8:28	8:53	9:17	9:41	10:05	10:29
SAMPLING DEPTH (feet)	:	40	8	75	8	9	40	7.2
VOLUME WITHDRAWN (cc)	1	220	300	360	450	220	280	368
VOLUME INJECTED	20	20	20	8	8	20	8	20
DILUTION FACTOR	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
CARBON TETRACHLORIDE	P	pu	밑	먇	밑	pu	PП	ng
CHLOROETHANE	P	믿	Б	ри	5	2	ы	밑
CHLOROFORM	5	5	밑	2	2	P	밑	2
1,1-DICHLORO ETHANE	2	믿	P	P	2	밑	ы	2
1,2-DICHLORO ETHANE	5	Б	5	힏	5	ы	P	5
1,1-DICHLORO ETHENE	2	몯	둳	P	5	말	ри	2
CIS-1,2-DICHLORO ETHENE	2	5	2	þ	þ	P	덛	2
TRANS-1,2-DICHLORO ETHENE	2	5	Þ	5	þ	믿	D.	밑
DICHLOROMETHANE	p	믿	멑	ē	5	만	10	5
TETRACHLORO ETHENE	5	٦	ā	밑	1 9	5	5	돧
1,1,1,2-TETRACHLORO ETHANE	밀	멑	9	ē	5	9	ng	2
1,1,2,2-TETRACHLORO ETHANE	멷	2	밀	Б	9	19	g	5
1,1,1-TRICHLORO ETHANE	말	됟	pu	밑	9	5	ng	2
1,1,2-TRICHLORO ETHANE	g	돧	멑	1 2	9	100	Ę	5
TRICHLORO ETHENE	5	Б	ğ	밑	9	ng ug	ű	돧
VINYL CHLORIDE	P	2	ŋ	P	g	<u>n</u>	5	۶
TRICHLOROFLUOROMETHANE (FR11)	ъ	P	DG.	Ę	g	P	5	5
DICHLORODIFLUOROMETHANE (FR12)	p	5	ď	Đ.	ğ	5	2	2
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	p	ы	nď	nd	pu	ng	5	돧
8ENZENE	pu	밑	пď	ъ	nď	nđ	ри	Pu
CHLOROBENZENE	p	밑	g	2	2	ם	5	5
ETHYLBENZENE	Đ.	2	2	g	5	Б	2	힏
TOLUENE	달	멑	2	ğ	2	2	Ъ	둳
m&p-XYLENES	밑	밑	2	g	2	2	5	돧
o-XYLENE	ρυ	ы	P	pu	pu	ы	5	몯
SURROGATES (75-125% RECOVERY)								
DIBROMODIFLUOROMETHANE	113%	114%	110%	118%	119%	121%	118%	121%
1,2-DICHLOROETHANE-44	110%	109%	102%	113%	107%	114%	115%	113%
ND INDICATES AIOT DETECTED AT A DETECTION	R CO	8.101 GG 41.	2070	%L0L	%ce	95%	91%	%96 **
The second secon								

ND INDICATES NOT DETECTED AT A DETECTION LIMIT OF 1.0 UG/L-VAPOR FOR EACH COMPOUND ANALYSES PERFORMED ON-SITE IN CA DOHS MOBILE LABORATORY #1561
ANALYSES PERFORMED BY: MARK BURKE
DATA REVIEWED BY: TAMARA DAVIS

APPENDIX B-2

CHAIN-OF-CUSTODY FORMS

CHAIN-OF-CUSTODY RECORD

7	0	270
	-	Ĕ.
	4	ਨੂੰ ਨ
T	Œ	0
Щ	. 0	IINGS
П	n.	Ä
U	α	Z.
	0	ij
	U	32 GO
O	z	2632
	_	CI
انتاالأ		

CHAIN-OF-CUSTODY RECORD

	ð	PECULIANE MANE	JAY ROBINSON	LOGESTON SOLD SOLD SOLDS. S. S	CITY, STATE AND ZIPCODE	MATIONS 18AK CA 11 TES		Comments	60 cc 57/11/208										COOLER TEMPERATURE UPON RECEIPT	SAMPLE'S CONDITION UPON RECEIPT		ject Data Manager
	_		858-773-0401 858-773-0464	432 N. CKN LOS AVE	7.7	SOLANA ISCALA CA (COS) MATIONS	John See.		*-										COOLE		330 G-00d	with Analytical Report); Goldenrod - Project File; Yellow - Project Data Manager
396-1455	1	55	04-4728 10	1/4	CUIEST	US NAVY SWOIV	909 - 39 6-1455	TA TO TOO TO	NOUS 1* 3										LL NUMBER:	┝╼	8-8-8	
DIAMOND BAR, CA 91765 • (909) 396-7662 • FAX (909) 396-1455		7997-9	ANAVAZ SVE MONTORUME	画る	CITY. STATE AND ZIPCODE	145 45 BBJACA 71108	PHONE 1 MANAGER S PHONE 1	SHILL SOCK THERE	11 AIR 8/18/3 1318	2 1340	105 1 1405								COURIER AND AIR BILL NUMBER.	111111111111111111111111111111111111111	11/1/11/11/11	Distribution: White - Laboratory (To be returned
DIAMOND BA	8 .	JAY KOBINSON	PROJECT NAME:	PROJECT CONTACT TAY ROBINSON	PROJECT ADDRESS	4800 OAK GRONE DK	PROJECT MANAGER	1	1 Sm30-79C-0	2 SM30-MD-01	3 Sm 30-M6-013	4	5	9	7	8	6	01	SAMPLES COLLECTED BY	15	Ton Mil	Q

CHAIN-OF-CUSTODY RECORD

	-296-1455 GF08180346 MARKBUKE (PROFON INC		2	SOLAWA BEACH CA 92075	11/1/1/05	C. Leak A. T. T. Comments	N)0(A								\(\rightarrow\)	DUPLICATE	COOLER TEMPERATURE UPON RECEIPT	DATE TIME SAMPLE'S CONDITION UPON RECEIPT	8-14.9 1311 6-016	1.1. 4 - 1. d 1. d.
662 • FAX (909) 396-1455	THY PORM 1501 909 - 396-762 909 - 396-7	MINION SE MONITORING	· •	PRY STATE AND ZIPCODE OFFICE AND SPUT CA 9/108 US	909-396-7662 909	Sight till GIV	19/2 0802 NANK 1*	2 Srw2-VPB-015 1 0824 1	3 SVW 1-YPC-016 0846	4 SW2-VPA-017 0908	5 SW3-YPB-018 0930	6 SVW3-YPC-019 0982	7 Srw7-rph-020 1017	8 Srw7-rPB-021 1040	9 Smy-v08-022	10 Sym4-YPB-023	TED BY TATE COURSER	ELINOUS GER BY	to go will be a few little	

TOROPORA TED 22632 GOLDEN SPRINGS DR., SUITE 270

CHAIN-OF-CUSTODY RECORD

	96-1455 GFORISO3-66 MARK BUCKE CORPANY NAME)	TAY ROBINSON	432 N. CED ROS ANG 22632 COLDEN SPLINGE DR	Ť		ELIZA	(NORM)									COOLER TEMPERATURE UPON RECEIPT	DATE TIME SAMPLE'S CONDITION UPON RECEIPT X -/q 05 3 /5 /		Distribution: White - Laboratory (To be returned with Analytical Report); Goldenrod - Project File; Yellow - Project Data Manager
22632 GOLDEN SPRINGS DR., SUITE 270 DIAMOND BAR, CA 91765 • (909) 396-7662 • FAX (909) 396-1455	PAN C	1704MG	_	4 91/08 USNAY	PROJECT MANAGER 3 PHONE 7662 909-396-1455	O 10 % Savissava sin.	19/2/255 NONB 1*								,	COURLER AND AIR BILL NUMBER.	HALL MACEINED BY	Trade Wall	ite - Laboratory (To be returned with Ans
22632 GOLDEN SPRINGS DR., SUITE 270 DIAMOND BAR, CA 91765 • (909) 396-7662	GEOFONY, LAB COORDINATOR S PHONE JAY ROBINSON 909-396-	PROJECTURANTE # 2 PROJECT LOCATION	PROJECT CONTACT PROJECT PHONE NUMBER 7/4-976	Ŋ		Sample Identifier	1 SYW4-YPD-024 AIK	2	3	4	5	9	 ∞	6	01	SAMPLES COLLECTED BY The SAMPLES COLLECTED BY	RELINOMINED BY		Distribution: Wi

			'662 • FAX (909) 396-1455
7		SUITE 270	
	۲	Ë	396-
U	∢	DR., S	606
IT	Œ		2.
뜻	0	NGS	A 9176
П	o	SPRI	Š.
Ų	Œ	OLDEN S	Ę
Ш	0	5	9
7	Ü	ത	중
U	z -	22632	DIAM

CHAIN-OF-CUSTODY RECORD

JAMONU BAH, CA 91/63 * (909) 390-7002 * FAA (909) 390-1435	M(0) $ M(0) $	PROJECT LOCATION PROJECT LOCATION PROJECT NUMBER PROJECT LABORATORY PAY PROJECT LOCATION PROJECT NUMBER PROJECT LABORATORY PAY PROJECT LOCATION PROJECT LOCATION PROJECT LOCATION PROJECT NUMBER PRO	714-920-8438 PROJECT FLX 1/7 432 N. CED LOS AVE	MARKANDA CA 9/1/18 17 (A) A/Y Child I'M SOLAND ROACH CA 92075	PROJECT MANAGER'S PROJECT MANAGER'S FAX 9009-396-71662 909-396-1455	No. of the state o	4 10 8/24, 0730 Im 16 1 X 3 110em	1 1 0755 [1	- VPB-627 X	20-34x		.VPJ-030 0924	YPA-031 0946 X	1008 X X X X X X X X X X X X X X X X X X	VPC-033 1030 X	X N ZSOI	COUNTER AND AIR BILL NUMBER.	WREGEWED'BY DATE TIME		Distribution: White - Laboratory (To be returned with Analytical Report); Goldenrod - Project File; Yellow - Project Data Manager
DIAMOND BAH, CA	TAY ROSINCO	_	PROJECT CONTACT PROJECT CONTACT PROJECT CONTACT	0		ogional de la constant	5 VW	2 SVW32-VPB-026	3 Sm 32- VPB-627	4 5m32- VME-028	5 Sww 32- MPI-029	6 Sm32-125-030	, 5m14- YPA-031	8 SM14-YPB-032	9 SMI7-VPC-033	10 Srw/7- VPC-034	SAMPLES COLLECTED BY	KE OBHSHOONING	toler	Distrih

Z	
0	1
L	
U	
Ö	
Illini	

llicattl

CHAIN-OF-CUSTODY RECORD

LABORATORY COPY

22632 GOLDEN SPRINGS DR., SUITE 270
DIAMOND BAR, CA 91765 • (909) 396-7662 • FAX (909) 396-1455

	100 100	PROJECT STATE PROJECT PHO PROJECT CONTACT STAY LOSINSON 714-		•	•			
### Comments of Contract No. 1724 Contract N	### Winder Low-row Probe 1705 Part 1705	Son	396-7662	909-39	S 650818	MARK		3
1914 - 90.0 - 8438	141 - 90 - 9438	Masu	CATION MON!		1 0 858-79	1.780RATORY FA 858-793		181250 W
COLIER AD AR BLEINDER	100 Sinter two zincore 100 Si		920-8438	$\overline{}$		V. CEDROS MV.		GOLDEN SPRIM
35 AIR 8000 120 1000 1	35 A 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	OFICA OFE DE PREDE	AND ZIPCODE SOUTH CA 9/108	·		IA BACH CA	12075	DIMMOND BARCA 91765
S - VPC - 0.35	3 - 77 2 - 635	NAGER PROJECT MAN	09/ C7/ C2	GR'S FA				
VPC-035 APP 1902 VPD-036 VPD-036 VPD-036 VPD-037 VPD-0	176-035 11 (10) (14) (14) (14) (14) (15) (15) (15) (15) (15) (15) (15) (15	rumeer	2007 015	Λ	S. F. BUX			
1785-035 AIR 8/240 Marke 1 # 3 (2064) TO 17 TO 1	1702 17	Sample Identifier	3 Sec	\$40.00 \$ \$ \$000 B	₹,			Comments
775-036 (1346 () X	1302		1/21/0/0/8	NE 1*1 3N	1			
776-037 (324 X X X X X X X X X X X X X X X X X X X	W8-038 1344 X X X X X X X X X X X X X X X X X X	20-07V-826	1 1302		×			
FINAGASSED BY COURSER AND ARR BILL NAMER. BANGASSED BY RECEIVED BY BECEIVED BY BECEIVED BY BECEIVED BY	WB-038 1346 X X X X X X X X X	W8-176-037	1324		/×			
GOURLER AND ARE BILL IN WAREN. COURIER AND ARE BILL IN WAREN. SANDER SANDER	Engolation: White - Laboratory (To be returned with Analytical Report); Coldenrod - Project File; Yellow -	W13- MB-038	1346		×			
ELINGASKED BY COURIER AND AIR BILL NUMBER. BATE TIME SAMP SAMP	SAMPLE BY RECEIVED							
EINOGASHED BY COURIER AND AIR BILL NUMBER. BINOGASHED BY RECEIVED B	COURIER AND ARR BILL NUMBER. COURIER AND ARR BILL NUMBER. COURIER AND ARR BILL NUMBER. SAMP							
GOURGER AND ARR BILL NUMBER. SAMP RECEIVED BY RECEIVED	COURTER AND ARR BILL NUMBER. BANE BANE BANE BANE BANE BANE BANE COURTER AND ARR BILL NUMBER. BANE BANE BANE BANE SAMP BANE SAMP BANE SAMP							
GOURDER AND AIR BILL NUAGER. COURIER AND AIR BILL NUAGER. BANDO GOAL SAMP (400 GOAL	COURLER AND ARR BILL NIAMBER. SAME TIME TIME SAME							
SAMPLAND AND AND BILL INJURGER. SAMPLAND SAMPLAND BY SP.19 -03 14.00 5.001	COURGER AND AIR BILL NUAGER. SAMP							
GLINOUSHED BY COURIER AND AIR BILL NUMBER. BLINOUSHED BY RECEIVED BY B-19-03 //L40 G-024 SAMP	SINGUISTIED BY RECEIVED BY BY-19 -03 1400 600 SAMP SAMP SAMP BY-19 -03 1400 600 600 SAMP SAMP SAMP BY-19 -03 1400 600 600 600 600 600 600 600 600 600							
7 TIME TIME TIME TIME SP-19 -03 (4.00 6-00)	Relinquished by Received 8-19-03 1400 God Condition White - Laboratory (To be returned with Analytical Report); Goldenrod - Project File; Yellow - Project Data Manager	DLLECTED BY	COURUER AND AIR B	ILL NUMBER.			COOLE	R TEMPERATURE UPON RECEIPT
1/60	Distribution: White - Laboratory (To be returned with Analytical Report); Goldenrod - Project File; Yellow - Project Data Manager	RELINGWISHED BY	7///		—		SAMPLE'S CO	NOTION LIPON RECEIPT
	Distribution: White - Laboratory (To be returned with Analytical Report); Goldenrod - Project File; Yellow - Project Data Manager	graff 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		pag.		
	Distribution: White - Laboratory (To be returned with Analytical Report); Goldenrod - Project File; Yellow - Project Data Manager							

Z	
0	
F	
W	
Ä	
Illini	

CHAIN-OF-CUSTODY RECORD

LABORATORY COPY

22632 (FOLDEN) SPLINIS DR 270 DIAMOND BAR CA 91765 RECIPIENT NAME

OF A CONTROL OF シングラグ Comments GEDFON MAIL REPORT (COMPANY NAME) COOLER TEMPERATURE UPON RECEIPT Distribution: White - Laboratory (To be returned with Analytical Report); Goldenrod - Project File; Yellow - Project Data Manager Dufucati SAMPLE'S CONDITION UPON RECEIPT * 60 CL SOLANDA BETHLY CA 92075 909-396-7662 909-396-1455 GFORIRO3-L6 MARK BURKET RIGHT BEST LOCKTION FAX.
ANDUAL SKE MONITORING 04-4428-10 888-793-0401 858-793-0404 432 N. CEDROS AVE LABORATORY CONTACT A CONTRACT -LABORATORY SERVICE 1D CITY. STATE AND ZIPCODE 3: 143a MOCENIA K 乂 یح × \angle \nearrow ₹<u>}</u> DATE 9-21-93 San John San CITY STATE AND ZIPCODE

(AKADICAL)A CA 91/08 [15 N/AVY SWID] V

PROJECT MANAGER'S

PROJECT MANAGER'S 769-396-7662 | 909-396-1455 7400,100 LAB COORDINATOR'S FAX Pareserved . * PROJECT FAX | N C O H P O B A T E D 22632 GOLDEN SPRINGS DR., SUITE 270 DIAMOND BAR, CA 91765 • (909) 396-7662 • FAX (909) 396-1455 A1R 8/2/6/07/5 NONE COURTER AND AIR BILL NUMBER. Start 1 0906 2780 12 h 0360 1034 1012 9800 0737 2760 714-920-8438 CITY. STATE AND ZIPCODE 3,80 tinen. LAB COORDINATOR'S PHONE SM33- YPG-047 5m 33-MB-042 Snw 33-12-043 5rw 33- VPD-044 5m33-VPF-046 10 Sm 33 - VPG-048 5M33- VP8-045 DUPLICATE SMJ0-197-040 SAMPLES COLLECTED BY 5m 10-MB-039 5 pw 33-YPA-041 Sample Identifier 4800 OAK CHONE DE PROJECT MANAGER ASLAL FAHEEM T. ROBINSON · KOBINSON PROJECTIVALE #2 GEOFON', LAB COORDINATOR B

	C
	u
8	۱
u	<
\mathbf{T}	0
Щ	Ç
\Box	0
U	0
	Ç
#	ζ
(I	Z
	-
Himil	
יון	'

CHAIN-OF-CUSTODY RECORD

LABORATORY COPY

INCORPORATED 22632 GOLDEN SPRINGS DR., SUITE 270 DIAMOND BAR, CA 91765 • (909) 396-7662 • FAX (909) 396-1455

MAIL REPORT (COMPANY NAME)	GEBFEN INC	1. Cols 1 NSO N	12632 (50/15 cm 5/21, 20 D/L	DIAMOND BAR CA 91765	1 1	Comments	* 60 cc 54/21 2005									COOLER TEMPERATURE UPON RECEIPT	SAMPLE'S CONDITION LPON RECEIPT		roject Data Manager
LABORATORY SERVICE ID LABORATORY CONTACT	GF081803-L6 MARK BURKE		432 N. CODES AVE	SOLAND ROODE CH CA 92075	0.00 35°											000		430 Cost	Distribution: White - Laboratory (To be returned with Analytical Report); Goldenrod - Project File; Yellow - Project Data Manager
LAB	1	28.1085	87) (43)			A Cover of	2	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	×	×		_					l l'	8-76-8	alytical Repor
DIAMOND BAH, CA 91765 • (909) 386-7662 • FAX (909) 396-1455 R LAB COORDINATOR'S PAONE		משמשלמ	-8438 PROJECT FAX	CLIEST CLIEST	62 909-396-145	\$0.30 SANDSALC BUILT	25 NAW 17	1247	(310	1332	1354	9141				COURIER AND AIR BILL NUMBER:	RECEIVED BY		aboratory (To be returned with An
CA 91765 • (909) 396-76	909-396-7662	PROJECT LOCATION SVE	PROJECT PHONE NUMBER 7/4 - 9 20-8438	CITY. STATE AND ZIPCODE	909-396-7662	twen		T	1 73	7	3	7.			,	COU	8		ibution: White - La
DIAMOND BAH, GEOFON'S LAB COORDINATOR	J. ROBINSON		2	7	<u> </u>		1 SM33-XPJ-049	2 SVW 9- YPH-050	3 Spw9-48-051	4 Sym9 - YPC-052	5 Smy- MD-053	6 Smy - VVB- 054	 8	6	10	SAMPLES COLLECTED BY	RELINDESSED BY	Tolly	Distr

			FAX (909) 396-1455
-	0	2	ខ្ល
	Ш	百万	9996
7	F	SUT	38
	4	-	909
\mathbf{T}	α	SDA	÷
L.	0	NGS	1765
	o	띴	9 X
U	Œ	ä	ď
		LOE!	BAI
	υ	8	등
m	Z	2632	Ĭ
	-	2	莅
- - - - - - - - - 			

CHAIN-OF-CUSTODY RECORD

LABORATORY COPY

13 TRCH 91765 22632 GOLDIONS/RINGS DR INC RECIPIENT NAME

T. ROSINSON Comments * 60 cc 57/2/2018 MAIL REPORT (COMPANY NAME) GEDFON SOLANA BOTH CA 92075 DIAMOND COOLER TEMPERATURE UPON RECEIPT DUPLICATE Distribution: White - Laboratory (To be returned with Analytical Report); Goldenrod - Project File; Yellow - Project Data Manager CITY, STATE AND ZIPCODE SAMPLE'S CONDITION UPON RECEIPT ADDRESS 909-396-1455 CAOS1803-LG MAK BURKS 909-396-7662 909-396-1455 01981803-L6 11MKK BUILLS ON ON HOVE LABORATORY FOX AND WAY SW -793-0401 858-743-0404 432 N. CEDROS ANG LABORATORY CONTACT 0 % LABORATORY SERVICE ID S. S. Lillian CITY. STATE AND ZIPCODE 73 (S 3 NORAL X 7) (1) MSADEM CH-7/108 US NAVY SWDIT 8-77-8 DATE (SNO) JO 564-346-1453 Tuo To PRQUECT FAX LAB COORDINATOR'S FAX Partasand Ł 4, R 8/1/05 0705 NONE RECEWED BY PROJECT PHONE NUMBER 7/438 CLIEST COURIER AND AIR BILL NUMBER SULT. 0269 h/80 0836 9701 1004 MS LAR MABBY 909-396-7662 0752 2460 8580 927 380 tuen, LAB COORDINATOR'S PHONE Sm26-796-062 Sm128-17PA-057 SW18- VPE-060 500025-VPA-064 5m28-ND-058 5mJ6-VPH-063 5m28-170-059 SW35-YPI-OSE 5m26-7PF-061 4900 OM COLONGTON Sample Identifier Sm35-VPE-055 SAMPLES COLLECTED BY · KOBINSON J. LOSI NSON PROJECT NAME: #2

Z	Щ
7	۲
u	۷
I	Œ
ᄔ	0
П	O
Ų	Œ
Ш	0
#	O
	z
	-
Hillini	

أانسيناأ

CHAIN-OF-CUSTODY RECORD

LABORATORY COPY

RODELLCH GLOTSTDIMIOND BARCH 91765 22632 GOLDONSPRINGS DA T. ROSINSON DCC SY LINCO Comments MAIL REPORT (COMPANY NAME) GROFON COOLER TEMPERATURE UPON RECEIPT Distribution: White - Laboratory (To be returned with Analytical Report); Goldenrod - Project File, Yellow - Project Data Manager CITY, STATE AND ZIPCODE SAMPLE'S CONDITION UPON RECEIPT ADDRESS MARK BUCKE PROJECT LOCATION
PROJECT LOCATION
PROJECT NUMBER
PROJECT NUMBER
PROJECT LABORATORY FROM
PROJECT NUMBER
PROJECT NUMBER
PROJECT LABORATORY FROM
PROJECT NUMBER
PROJECT LABORATORY FROM
PROJECT NUMBER
PROJE 432 M. CODROS AVE LABORATORY CONTACT Poly and GF081803-64 F SOLMYA LABORATORY SERVICE ID LABORATORY ADDRESS SSKIRITA 512) P-22-43 CITY. STATE AND ZIPCODE

(CLIEST

(NAVY SWDIY

PROJECT MANAGER'S

PROJECT MANAGER'S FAX

PR 13737JO 128 CORDINATOR'S PHONE | LAB COORDINATOR'S FAX | 909-396-7662 | 909-396-1455 | PROJECT LOCATION | PROJECT NUMBER * of Contr \star Partaga de 22632 GOLDEN SPRINGS DR., SUITE 270 DIAMOND BAR, CA 91765 • (909) 396-7662 • FAX (909) 396-1456 RECEIVED BY A10 84% 145 NONB COURIER AND AIR BILL NUMBER. SUIT! 714-920-8438 CITY, STATE AND ZIPCODE 郊 123 turen, PROJECT PHONE NUMBER Sm25-191-066 5m25-495-067 5m25+17PB-065 ASCAR FATERAL Sample Identifier 4800 OAK GROWE DI T. ROBINSON · Robinson PHOJECT MARE # 2 GEOFON's LAB COORDINATOR SAMPLES COLLECTED BY PROJECT MANAGER PROJECT ADDRESS 2 00 σ

7	(
I	(
뽀	1
0	1
	•
0	:
Illini	

CHAIN-OF-CUSTODY RECORD

LABORATORY COPY

INCORPORATED 22632 GOLDEN SPRINGS DR., SUITE 270 DIAMOND BAR, CA 91765 • (909) 396-7662 • FAX (909) 396-1455

7	
Ō	
H	
Щ	
	11
Illimi	

CHAIN-OF-CUSTODY RECORD

LABORATORY COPY

22632 GOLDEN SPRINGS DR, SUITE 270
DIAMOND BAR CA 91765 - (909) 396-1455

CHAIN-OF-CUSTODY RECORD

LABORATORY COPY

4800 OAK GRONEDO UNADIONA CA 9/108 USNANY SWIDIN SOLAWA BEACH CA 92075 DIAMOND BARCA-91765 22632 GOLDEN SPAING DR GOTON INC * 60 cc 5421106 BECHIEVENANE J. ROBINSON MAIL REPORT (COMPANY NAME) COOLER TEMPERATURE UPON RECEIPT PROJECT LOCATION
ANDURY SYSTION TOLING OY-4428.10 858-793-0401 858-793-0404 MARK BURKE 432 N. CEDROS AVE LABORATORY CONTACT d Costant 909-396-7662 909-396-1455 0081803-46 LABORATORY SERVICE ID CITY, STATE AND ZIPCODE 72 VI San Joo AS CAR FAHEON 409-396-7662 909-396-1453 THO TO WE NA LAB COORDINATOR'S FAX Day Served $\overline{*}$ PROJECT FAX 412 8/27/3 0845 MENE CLIEÑT PHILIT ! 0955 1040 1102 471 25/ 6260 40% 4101 714-920-8438 3/8/2 they, LAB COORDINATOR'S PHONE CITY, STATE AND ZIPCODE SVW37-49B-086 SMJ37- ME-087 50~38-WF-084 Sm37- 4PH-088 SVW38-VPD-083 5m 38- MJ-085 Svn37-vPI-090 5m37- 704-089 SW37-175-09 Sample Identifier PROJECT CONTACT

T. KOKINSON DUPLICATE · KORINJSON PROJECT NAME OL # 2 2

Distribution: White - Laboratory (To be returned with Analytical Report); Goldenrod - Project File; Yellow - Project Data Manager

SAMPLE'S CONDITION UPON RECEIPT

500

OO'Z)

S TC-33

A SCEIVED BY

COURIER AND AIR BILL NUMBER.

SAMPLES COLLECTED BY

7	
Ų	
片	
U	
삤	
Ü	
Hilm	

Minarill

CHAIN-OF-CUSTODY RECORD

LABORATORY COPY

22632 GOLDEN SPRINGS DR., SUITE 270
DIAMOND BAR, CA 91765 • (909) 396-7455

MAMOND BAR, CA 91765 • (909) 396-7662 • FAX (909) 396-1455	LABORATORY SERVICE ID LABORATORY CONTACT LABORATORY SERVICE ID LABORATORY CONTACT	50~ 909-396-7662 909-396-1455 GOBISO3-LG MARKBURKS	PROJECT LOCATION PROJECT LOCATION PROJECT HONE LABORATORY FROM LABORAT	PROJECT PHONE NUMBER PROJECT FAX 7 1/4 - 9 > 0 - 8 4 2 8	CITY. STATE AND ZIPCODE	PARTOWN CA 91108 US NAVY SUDIT SOLMUT BEACH CA 92075	PROJECT MANAGER'S PROJECT MANAGER'S FAX	1 909-346-1062 109-396-455	Change Viola 100 Con	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1/2 8/2/6/0745 John 1/4 3 12	1 1 2080 1	68.0		5-VP6-102	-1708-103	201.10 ABS-104 DOPLICATE.	X			COLINER AND AIR BILL NUMBER.	O Na Opposition in	8-19-5 10:15 Good	Charles Interior Interior (Tale to manage mish Amplication Demonstrate Colones Ciles Vollane Devises Manages
DIAMOND BAR,	GEOFON: LAB COORDINATOR	J. KoKINSON	PROJECT KANE: #2	(40) 20	PROJECT ADDRESS	Collars DR	_	KSLAR PANTESON	wa	Sample Identifier	1 SAW 15-17016-699	2 SAWIS-YPC-100	101-101-101	_	4 SYMIS-VPB-102	3 SMJ6- MBB-103	6 Smy 6 - VPB - 104	7 SMM6- YPD-10	∞	0	SAMPLES COLLECTED BY			

7	
Ö	
Ö	
J	
Illini	ij

CHAIN-OF-CUSTODY RECORD

LABORATORY COPY

22632 GOLDEN SPRINGS DR., SUITE 270
DIAMOND BAR, CA 91765 • (909) 396-7662 • FAX (909) 396-1455

MAIL REPORT (COMPANY NAME) (SEOFF) INC	RECIPIENT NAME SINSON	LLG32 GOLDEN SARINGS DA	DIMMOND 1946 CH 91765		Comments	1 60 cc 51/RINGE	DUPLICATÉ									COOLER TEMPERATURE UPON RECEIPT	SAMPLE'S CONDITION UPON RECEIPT			ject Data Manager
GOSTORY SERVICE ID LABORATORY CONTACT MAIL REPORT (COMPANY IN	94-442810 858-793-0401 858-793-040	432 N. CEDROS ME	K			X										COOLE		Page Cin		Distribution: White - Laboratory (To be returned with Analytical Report); Goldenrod - Project File; Yellow - Project Data Manager
156/- 968	PROJECT NUMBER	1	US MANY SWIN	909-396-1455	V &)	Nows 1 * 3 Now		2								BILL NUMBER,	RECEIVED BY DATE TIME			(To be returned with Analytical Rep
909-396-7662 909-	AN NURY SYS MONITORING	714-920-8438	MR ASTATE AND ZIPCODE	ł	PARC THERE	- 418 8/28/3 OF	193 0820	7,80 7,60	995 0904	7760 960	8460 260	0/01 1 360-				COURTER AND AIR BILL NUMBER				istribution: White - Laboratory
GEOEDN'S HAB COORDINATOR	PROJECT NAME: #2	PROJECT CONTACT J. ROYS INSON)	PROJECT ADDRESS	PROJECT MANAGER ASCHEL FAHEBEM	Sample Identifier	1 Srw34-YPE-092	2 SNU34-17E-093	3 SM334-YPF-094	4 Srw39-YPA-095	5 Srw39-176-096	6 Sw 39-YVF-097	360-Id1-68 cm 5 1	8	6	01	SAMPLES COLLECTED BY	RELINOVISHED BY	The State of		

APPENDIX B-3

DAILY OPENING, CLOSING, AND CONTINUING CALIBRATION VERIFICATION REPORTS

DATE: 08/18/03	701103 V 199113	CIALLIAITIA	71-40	CHORLY COLLECT. CONTENTIAL OALD DATEON (OPENING) OF 15 - 15 - 11 - 15 - 15 - 15 - 15 - 15	1000	
ממו מים ביונים	SOLILI SOURCE		ALIBRALIC	TON (DNINELO) NO		56-73
HP Labs Project #GF081803-L6	SUPPLY SOURCE:	QUALITY CON	TROL (CLO	SUPPLY SOURCE: QUALITY CONTROL (CLOSING) SUPELCO LOT #LSS-774	OT #LSS-774	
LAB-6	INSTRUMENT: AC	SILENT 6850 GC	/ 5973 MAS	AGILENT 6850 GC / 5973 MASS SPECTROMETER	'n	
	OPENIN	OPENING STANDARD		2ND SOURCE	2ND SOURCE (1ug/L) CLOSING	ING
COMPOUND	MASS	RESULT	%DIFF	MASS RE	RESULT	%DIFF
CARBON TETRACHLORIDE	20	49.7	0.6%	1.0	1.23	23.0%
CHLOROFORM	20	49.6	0.8%	1.0	1.29	29.0%
1,1-DICHLORO ETHANE	20	51.8	3.6%	1.0	1.32	32.0%
1,2-DICHLORO ETHANE	20	52.7	5.4%	1.0	1.30	30.0%
1,1-DICHLORO ETHENE	20	48.2	3.6%	1.0	1.14	14.0%
CIS-1,2-DICHLORO ETHENE	20	49.0	2.0%	1.0	1.12	12.0%
TRANS-1,2-DICHLORO ETHENE	20	48.8	2.4%	1.0	1.14	14.0%
DICHLOROMETHANE	20	48.6	2.8%	1.0	1.24	24.0%
TETRACHLORO ETHENE	20	49.2	1.6%	1.0	1.17	17.0%
1,1,1,2-TETRACHLORO ETHANE	20	51.6	3.2%	1.0	1.32	32.0%
1,1,2,2-TETRACHLORO ETHANE	20	51.3	2.6%	1.0	1.24	24.0%
1,1,1-TRICHLORO ETHANE	20	49.4	1.2%	1.0	1.21	21.0%
1,1,2-TRICHLORO ETHANE	20	49.7	%9.0	1.0	1.17	17.0%
TRICHLORO ETHENE	20	47.3	5.4%	1.0	1.00	0.0%
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	50	52.7	5.4%	1.0	1.28	28.0%
BENZENE	20	51.4	2.8%	1.0	1.28	28.0%
CHLOROBENZENE	20	50.9	1.8%	1.0	1.16	16.0%
ETHYLBENZENE	20	54.9	8.6	1.0	1.12	12.0%
TOLUENE	20	50.8	1.6%	1.0	1.25	25.0%
m&p-XYLENES	100	114	14.3%	2.0	2.41	20.5%
o-XYLENE	50	54.7	9.4%	1.0	1.01	1.0%
ANALYSES PERFORMED ON-SITE IN CA DOHS MOR	10BILE LABORATORY #156	±1561				

DATE: 08/19/03	SUPPLY SOURCE:	CONTINUING	CALIBRATIC	SUPPLY SOURCE: CONTINUING CALIBRATION (OPENING) SUPFI CO LOT #1 SS-773	FI CO I OT #1 S	\$5-773
HP Labs Project #GF081803-L6	SUPPLY SOURCE:	: QUALITY CON	TROL (CLC	SUPPLY SOURCE: QUALITY CONTROL (CLOSING) SUPELCO LOT #1.SS-774	OT #LSS-774)
LAB-6	INSTRUMENT: AC	AGILENT 6850 GC / 5973 MASS	7 5973 MA	SS SPECTROMETER		
	OPENIN	OPENING STANDARD			2ND SOURCE (144/L) CLOSING	NG
COMPOUND	MASS	RESULT	%DIFF	MASS RI	RESULT	%DIFF
CARBON TETRACHLORIDE	50	52.1	4.2%	1.0	1.10	10.0%
CHLOROFORM	20	51.3	2.6%	1.0	1.09	%0°6
1,1-DICHLORO ETHANE	20	52.9	5.8%	1.0	1.13	13.0%
1,2-DICHLORO ETHANE	20	53.8	7.6%	1.0	1.06	%0.9
1,1-DICHLORO ETHENE	20	49.7	%9.0	1.0	0.99	1.0%
CIS-1,2-DICHLORO ETHENE	20	49.4	1.2%	1.0	1.00	0.0%
TRANS-1,2-DICHLORO ETHENE	20	52.1	4.2%	1.0	1.02	2.0%
DICHLOROMETHANE	20	20.0	%0.0	1.0	1.07	7.0%
TETRACHLORO ETHENE	20	53.1	6.2%	1.0	1.03	3.0%
1,1,1,2-TETRACHLORO ETHANE	20	55.5	11.0%	1.0	1.16	16.0%
1,1,2,2-TETRACHLORO ETHANE	20	52.3	4.6%	1.0	1.03	3.0%
1,1,1-TRICHLORO ETHANE	20	50.9	1.8%	1.0	1.04	4.0%
1,1,2-TRICHLORO ETHANE	20	49.7	%9.0	1.0	1.00	%0.0
TRICHLORO ETHENE	20	48.9	2.2%	1.0	0.88	12.0%
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	20	56.3	12.6%	1.0	1.07	7.0%
BENZENE	20	53.8	%9 [.] 2	1.0	1.20	20.0%
CHLOROBENZENE	20	52.1	4.2%	1.0	1.05	2.0%
ETHYLBENZENE	20	54.1	8.2%	1.0	1.00	%0.0
TOLUENE	20	50,3	%9.0	1.0	1.11	11.0%
m&p-XYLENES	100	110	9.5%	2.0	2.15	7.5%
0-XYLENE	50	53.5	7.0%	1.0	0.89	11.0%
ANALYSES PERFORMED ON-SITE IN CA DOHS MO	OBILE LABORATORY #1561	‡1561				

ANALYSES PERFORMED BY: MARK BURKE DATA REVIEWED BY: TAMARA DAVIS

DATE: 08/20/03	SUPPLY SOURCE: CONTINUING CALIBRATION (OPENING) SUPFI CO I OT #1 SS-773	CONTINUING	CALIBRATION	(OPENING) SUF	PELCO LOT #1	58-773
HP Labs Project #GF081803-L6	SUPPLY SOURCE: QUALITY CONTROL (CLOSING) SUPELCO LOT #LSS-774	QUALITY CON	TROL (CLOSI	NG) SUPELCO L	OT #LSS-774) - -)
LAB-6	INSTRUMENT: AC	SILENT 6850 GC	: / 5973 MASS	AGILENT 6850 GC / 5973 MASS SPECTROMETER		
	OPENIN	OPENING STANDARD		2ND SOURCE	2ND SOURCE (1ug/L) CLOSING	ING
COMPOUND	MASS	RESULT	%DIFF	MASS R	RESULT	%DIFF
CARBON TETRACHLORIDE	20	51.9	3.8%	1.0	1.17	17.0%
CHLOROFORM	20	51.3	2.6%	1.0	1.15	15.0%
1,1-DICHLORO ETHANE	20	53.2	6.4%	1.0	1.20	20.0%
1,2-DICHLORO ETHANE	20	52.1	4.2%	1.0	1.14	14.0%
1,1-DICHLORO ETHENE	20	50.6	1.2%	1.0	1.02	2.0%
CIS-1,2-DICHLORO ETHENE	20	48.0	4.0%	1.0	1.08	8.0%
TRANS-1,2-DICHLORO ETHENE	20	52.3	4.6%	1.0	1.07	7.0%
DICHLOROMETHANE	20	20.0	0.0%	1.0	1.20	20.0%
TETRACHLORO ETHENE	20	52.0	4.0%	1.0	1.16	16.0%
1,1,1,2-TETRACHLORO ETHANE	20	55.2	10.4%	1.0	1.23	23.0%
1,1,2,2-TETRACHLORO ETHANE	20	50.6	1.2%	1.0	1.08	8.0%
1,1,1-TRICHLORO ETHANE	20	50.3	%9:0	1.0	1.13	13.0%
1,1,2-TRICHLORO ETHANE	20	49.6	%8.0	1.0	1.00	0.0%
TRICHLORO ETHENE	20	48.2	3.6%	1.0	0.98	2.0%
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	20	57.3	14.6%	1.0	1.11	11.0%
BENZENE	20	54.1	8.2%	1.0	1.24	24.0%
CHLOROBENZENE	20	50.2	0.4%	1.0	1.12	12.0%
ETHYLBENZENE	20	52.9	2.8%	1.0	1.15	15.0%
TOLUENE	20	52.4	4.8%	1.0	1.35	35.0%
m&p-XYLENES	100	109	%0.6	2.0	2.49	24.5%
0-XYLENE	20	52.7	5.4%	1.0	1.04	4.0%
ANALYSES PERFORMED ON-SITE IN CA DOHS MOR	IOBILE LABORATORY #1561	#1561				

ANALYSES PERFORMED BY: MARK BURKE DATA REVIEWED BY: TAMARA DAVIS

DATE: 08/21/03	SUPPLY SOURCE:		CALIBRATION	CONTINUING CALIBRATION (OPENING) SUPELCO LOT #LSS-773	PELCO LOT #L	SS-773
HP Labs Project #GF081803-L6 LAB-6	SUPPLY SOURCE: QUALITY CONTROL (CLOSING) SUPELCO LOT #LSS-774 INSTRUMENT: AGILENT 6850 GC / 5973 MASS SPECTROMETER	QUALITY CON	ITROL (CLOSI 275973 MASS	CE: QUALITY CONTROL (CLOSING) SUPELCO LO AGILENT 6850 GC / 5973 MASS SPECTROMETER	OT #LSS-774	
9 9 9 9	OPENIN	OPENING STANDARD		2ND SOURCE	2ND SOURCE (1ug/L) CLOSING	ING
COMPOUND	MASS	RESULT	%DIFF	MASS	RESULT	%DIFF
CARBON TETRACHLORIDE	20	51.2	2.4%	1.0	1.08	8.0%
CHLOROFORM	90	50.0	%0:0	1.0	1.12	12.0%
1,1-DICHLORO ETHANE	20	52.2	4.4%	1.0	1.17	17.0%
1,2-DICHLORO ETHANE	20	52.1	4.2%	1.0	1.08	8.0%
1,1-DICHLORO ETHENE	20	50.0	%0:0	1.0	0.99	1.0%
CIS-1,2-DICHLORO ETHENE	90	48.0	4.0%	1.0	96.0	4.0%
TRANS-1,2-DICHLORO ETHENE	20	50.2	0.4%	1.0	1.03	3.0%
DICHLOROMETHANE	20	48.6	2.8%	1.0	1.11	11.0%
TETRACHLORO ETHENE	20	52.9	2.8%	1.0	1.05	2.0%
1,1,1,2-TETRACHLORO ETHANE	20	54.0	8.0%	1.0	1.25	25.0%
1,1,2,2-TETRACHLORO ETHANE	20	20.7	1.4%	1.0	1.07	7.0%
1,1,1-TRICHLORO ETHANE	20	50.2	0.4%	1.0	1.11	11.0%
1,1,2-TRICHLORO ETHANE	20	47.2	2.6%	1.0	1.05	2.0%
TRICHLORO ETHENE	20	47.9	4.2%	1.0	0.85	15.0%
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	20	57.0	14.0%	1.0	1.20	20.0%
BENZENE	20	52.2	4.4%	1.0	1.12	12.0%
CHLOROBENZENE	20	51.2	2.4%	1.0	1.06	6.0%
ETHYLBENZENE	20	53.2	6.4%	1.0	0.99	1.0%
TOLUENE	20	50.0	0.0%	1.0	1.01	1.0%
m&p-XYLENES	100	109	80.6	2.0	2.09	4.5%
o-XYLENE	50	52.7	5.4%	1.0	0.86	14.0%
ANALYSES PERFORMED ON-SITE IN CA DOHS MOBILE LABORATORY #156	3II E I ABORATORY #	11561				

DATE: 08/22/03	SUPPLY SOURCE: CONTINUING CALIBRATION (OPENING) SLIPEL COLOT #1 SS-773	CONTINING	CAI IRRATIC	IS (SININE) NO	IPEL CO I OT #I	56.773
HP Labs Project #GF081803-L6	SUPPLY SOURCE: QUALITY CONTROL (CLOSING) SUPELCO LOT #LSS-774	QUALITY CON	TROL (CLO	SING) SUPELCO	JI ELGO LOT #L LOT #LSS-774	
LAB-6	INSTRUMENT: A	GILENT 6850 GC	2 / 5973 MAS	AGILENT 6850 GC / 5973 MASS SPECTROMETER	ER :	
	OPENII	OPENING STANDARD		2ND SOUR	2ND SOURCE (1ug/L) CLOSING	ING
COMPOUND	MASS	RESULT	%DIFF	MASS	RESULT	%DIFF
CARBON TETRACHLORIDE	50	52.6	5.2%	1.0	1.02	2.0%
CHLOROFORM	20	52.0	4.0%	1.0	1.04	4.0%
1,1-DICHLORO ETHANE	20	55.0	10.0%	1.0	1.08	8.0%
1,2-DICHLORO ETHANE	20	54.8	9.6%	1.0	1.07	7.0%
1,1-DICHLORO ETHENE	20	49.7	%9.0	1.0	0.95	2.0%
CIS-1,2-DICHLORO ETHENE	20	48.2	3.6%	1.0	0.96	4.0%
TRANS-1,2-DICHLORO ETHENE	20	52.4	4.8%	1.0	0.96	4.0%
DICHLOROMETHANE	20	50.3	%9.0	1.0	1.07	7.0%
TETRACHLORO ETHENE	20	53.1	6.2%	1.0	1.01	1.0%
1,1,1,2-TETRACHLORO ETHANE	20	9'.29	15.2%	1.0	1.16	16.0%
1,1,2,2-TETRACHLORO ETHANE	20	51.6	3.2%	1.0	1.13	13.0%
1,1,1-TRICHLORO ETHANE	20	51.2	2.4%	1.0	1.00	0.0%
1,1,2-TRICHLORO ETHANE	20	50.2	0.4%	1.0	1.00	%0.0
TRICHLORO ETHENE	20	46.6	%8.9	1.0	0.88	12.0%
DICHLORODIFLUOROMETHANE (FR12)	20	49.2	1.6%	1.0	1.13	13.0%
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	50	6'09	21.8%	1.0	1.10	10.0%
BENZENE	20	54.4	8.8%	1.0	1.09	80.6
CHLOROBENZENE	20	52.7	5.4%	1.0	1.06	80.9
ETHYLBENZENE	20	54.8	9.6%	1.0	0.97	3.0%
TOLUENE	20	48.6	2.8%	1.0	1.06	6.0%
m&p-XYLENES	100	110	10.0%	2.0	2.06	3.0%
o-XYLENE	20	53.2	6.4%	1.0	0.88	12.0%

DATE: 08/25/03	SUPPLY SOURCE: CONTINUING CALIBRATION (OPENING) SUPELCO LOT #LSS-773	CONTINUING	CALIBRATION	(OPENING) S	UPELCO LOT #L	SS-773
HP Labs Project #GF081803-L6 LAB-6	SUPPLY SOURCE: QUALITY CONTROL (CLOSING) SUPELCO LOT #LSS-774 INSTRUMENT: AGILENT 6850 GC / 5973 MASS SPECTROMETER	: QUALITY CON	TROL (CLOSII 7/5973 MASS	NG) SUPELÓC SPECTROME	LOT #LSS-774 TER	
	OPENII	OPENING STANDARD		2ND SOUR	2ND SOURCE (1ug/L) CLOSING	SING
COMPOUND	MASS	RESULT	%DIFF	MASS	RESULT	%DIFF
CARBON TETRACHLORIDE	20	52.0	4.0%	1.0	1.17	17.0%
CHLOROFORM	20	49.7	%9.0	1.0	1.12	12.0%
1,1-DICHLORO ETHANE	20	52.1	4.2%	1.0	1.18	18.0%
1,2-DICHLORO ETHANE	20	51.3	2.6%	1.0	1.13	13.0%
1,1-DICHLORO ETHENE	20	50.6	1.2%	1.0	1.04	4.0%
CIS-1,2-DICHLORO ETHENE	20	50.4	%8.0	1.0	0.96	4.0%
TRANS-1,2-DICHLORO ETHENE	20	51.5	3.0%	1.0	1.05	2.0%
DICHLOROMETHANE	20	49.9	0.2%	1.0	1.24	24.0%
TETRACHLORO ETHENE	20	51.8	3.6%	1.0	1.09	9.0%
1,1,1,2-TETRACHLORO ETHANE	20	51.6	3.2%	1.0	1.22	22.0%
1,1,2,2-TETRACHLORO ETHANE	20	47.0	%0.9	1.0	0.95	2.0%
1,1,1-TRICHLORO ETHANE	20	20.7	1.4%	1.0	1.09	%0.6
1,1,2-TRICHLORO ETHANE	20	47.1	2.8%	1.0	0.95	2.0%
TRICHLORO ETHENE	20	48.1	3.8%	1.0	0.98	2.0%
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	50	57.3	14.6%	1.0	1.12	12.0%
BENZENE	20	54.9	%8'6	1.0	1.27	27.0%
CHLOROBENZENE	20	49.4	1.2%	1.0	1.11	11.0%
ETHYLBENZENE	20	55.2	10.4%	1.0	1.13	13.0%
TOLUENE	20	55.8	11.6%	1.0	1.44	44.0%
m&p-XYLENES	100	112	12.0%	2.0	2.61	30.5%
o-XYLENE	50	55.8	11.6%	1.0	1.10	10.0%
ANALYSES PERFORMED ON SITE IN CA DOHS MOBILE I	BII F I ABORATORY #156	#1561				

DATE: 08/27/03	SI IDS V IDGI IS	- 11	NITAGE IAC	CONTINI IING CAT IBBATION (OBENING) STIBEL CO LOT #1 66 773	# TO 1 00 13	277
HP Labs Project #GF081803-L6	SUPPLY SOURCE		TROL (CLO	SUPPLY SOURCE: QUALITY CONTROL (CLOSING) SUPELCO LOT#1 SS-774	T# SS-774	2 - 00
LAB-6	INSTRUMENT: A	GILENT 6850 GC	/ 5973 MAS	AGILENT 6850 GC / 5973 MASS SPECTROMETER	- - - - - - - - - - - - - - - - - - -	
	OPENI	OPENING STANDARD		2ND SOURCE	2ND SOURCE (1ug/L) CLOSING	ING
COMPOUND	MASS	RESULT	%DIFF	MASS RE	RESULT	%DIFF
CARBON TETRACHLORIDE	20	52.0	4.0%	1.0	1.10	10.0%
CHLOROFORM	20	50.6	1.2%	1.0	1.12	12.0%
1,1-DICHLORO ETHANE	20	53.4	6.8%	1.0	1.18	18.0%
1,2-DICHLORO ETHANE	20	54.0	8.0%	1.0	1.10	10.0%
1,1-DICHLORO ETHENE	20	51.8	3.6%	1.0	1.01	1.0%
CIS-1,2-DICHLORO ETHENE	20	51.2	2.4%	1.0	1.02	2.0%
TRANS-1,2-DICHLORO ETHENE	20	52.0	4.0%	1.0	1.01	1.0%
DICHLOROMETHANE	20	51.4	2.8%	1.0	1.22	22.0%
TETRACHLORO ETHENE	20	51.3	2.6%	1.0	1.03	3.0%
1,1,1,2-TETRACHLORO ETHANE	20	53.0	6.0%	1.0	1.26	26.0%
1,1,2,2-TETRACHLORO ETHANE	20	50.1	0.2%	1.0	1.18	18.0%
1,1,1-TRICHLORO ETHANE	20	51.0	2.0%	1.0	1.05	2.0%
1,1,2-TRICHLORO ETHANE	20	48.0	4.0%	1.0	1.04	4.0%
TRICHLORO ETHENE	20	48.0	4.0%	1.0	0.82	18.0%
TRICHLOROFLUOROMETHANE (FR11)	20	62.0	24.0%	1.0	1.60	%0.09
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	20	57.1	14.2%	1.0	1.19	19.0%
BENZENE	20	52.5	2.0%	1.0	1.15	15.0%
CHLOROBENZENE	20	50.7	1.4%	1.0	1.08	8.0%
ETHYLBENZENE	20	53.5	7.0%	1.0	0.97	3.0%
TOLUENE	20	50.9	1.8%	1.0	1.13	13.0%
m&p-XYLENES	100	112	12.0%	2.0	2.01	0.5%
o-XYLENE	50	53.9	7.8%	1.0	0.83	17.0%

DATE: 08/28/03	SUPPLY SOURCE: CONTINUING CALIBRATION (OPENING) SUPFI CO I OT #1 SS-773	CONTINUING	CALIBRATION	A (OPENING) SI	IPFI CO I OT #I	82-773
HP Labs Project #GF081803-L6	SUPPLY SOURCE: QUALITY CONTROL (CLOSING) SUPELCO LOT #LSS-774	QUALITY CON	ITROL (CLOS	ING) SUPELCO	LOT #LSS-774) - -
LAB-6	INSTRUMENT: AG	SILENT 6850 GC	: / 5973 MASS	AGILENT 6850 GC / 5973 MASS SPECTROMETER	ËR	
	OPENIN	OPENING STANDARD		2ND SOUR	2ND SOURCE (1ug/L) CLOSING	SING
COMPOUND	MASS	RESULT	%DIFF	MASS	RESULT	%DIFF
CARBON TETRACHLORIDE	20	51.9	3.8%	1.0	1.05	2.0%
CHLOROFORM	20	49.9	0.2%	1.0	1.03	3.0%
1,1-DICHLORO ETHANE	20	53.1	6.2%	1.0	1.10	10.0%
1,2-DICHLORO ETHANE	20	52.9	2.8%	1.0	1.03	3.0%
1,1-DICHLORO ETHENE	20	49.1	1.8%	1.0	1.01	1.0%
CIS-1,2-DICHLORO ETHENE	20	48.1	3.8%	1.0	0.95	2.0%
TRANS-1,2-DICHLORO ETHENE	20	51.6	3.2%	1.0	1.01	1.0%
DICHLOROMETHANE	20	20.0	0.0%	1.0	1.17	17.0%
TETRACHLORO ETHENE	20	50.3	0.6%	1.0	1.05	2.0%
1,1,1,2-TETRACHLORO ETHANE	20	52.5	2.0%	1.0	1.15	15.0%
1,1,2,2-TETRACHLORO ETHANE	20	49.3	1.4%	1.0	1.12	12.0%
1,1,1-TRICHLORO ETHANE	20	50.6	1.2%	1.0	1.04	4.0%
1,1,2-TRICHLORO ETHANE	20	49.1	1.8%	1.0	0.98	2.0%
TRICHLORO ETHENE	20	46.2	7.6%	1.0	0.85	15.0%
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	50	55.5	11.0%	1.0	1.12	12.0%
BENZENE	20	54.2	8.4%	1.0	1.08	8.0%
CHLOROBENZENE	20	50.4	0.8%	1.0	1.04	4.0%
ETHYLBENZENE	20	53.6	7.2%	1.0	0.94	6.0%
TOLUENE	20	53.7	7.4%	1.0	1.15	15.0%
m&p-XYLENES	100	113	13.0%	2.0	1,99	0.5%
o-XYLENE	20	54.0	8.0%	1.0	0.85	15.0%
	1300440004101100	7 (1)				

DATE: 08/29/03	SUPPLY SOURCE	: CONTINUING	CALIBRATION	SUPPLY SOURCE: CONTINUING CALIBRATION (OPENING) SUPELCO LOT #LSS-773	ELCO LOT #L	SS-773
HP Labs Project #GF081803-L6	SUPPLY SOURCE	:: QUALITY CON	ITROL (CLOS	SUPPLY SOURCE: QUALITY CONTROL (CLOSING) SUPELCO LOT #LSS-774	DT #LSS-774	
LAB-6	INSTRUMENT: A	GILENT 6850 GC	: / 5973 MASS	AGILENT 6850 GC / 5973 MASS SPECTROMETER	2	
	OPEN	OPENING STANDARD		2ND SOURCE	2ND SOURCE (1ug/L) CLOSING	NG
COMPOUND	MASS	RESULT	%DIFF	MASS RE	RESULT	%DIFF
CARBON TETRACHLORIDE	90	49.2	1.6%	1.0	1.11	11.0%
CHLOROFORM	20	49.1	1.8%	1.0	1.10	10.0%
1,1-DICHLORO ETHANE	20	51.4	2.8%	1.0	1.14	14.0%
1,2-DICHLORO ETHANE	20	52.2	4.4%	1.0	1.09	%0.6
1,1-DICHLORO ETHENE	20	46.2	7.6%	1.0	96.0	4.0%
CIS-1,2-DICHLORO ETHENE	20	47.2	5.6%	1.0	96'0	4.0%
TRANS-1,2-DICHLORO ETHENE	20	48.8	2.4%	1.0	1.02	2.0%
DICHLOROMETHANE	20	49.4	1.2%	1.0	1.15	15.0%
TETRACHLORO ETHENE	20	49.6	0.8%	1.0	1.02	2.0%
1,1,1,2-TETRACHLORO ETHANE	20	53.5	7.0%	1.0	1.18	18.0%
1,1,2,2-TETRACHLORO ETHANE	20	47.3	5.4%	1.0	1.09	%0.6
1,1,1-TRICHLORO ETHANE	20	48.8	2.4%	1.0	1.07	7.0%
1,1,2-TRICHLORO ETHANE	20	45.9	8.2%	1.0	1.00	%0.0
TRICHLORO ETHENE	20	44.4	11.2%	1.0	0.83	17.0%
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	20	56.2	12.4%	1.0	1.21	21.0%
BENZENE	20	51.1	2.2%	1.0	1.18	18.0%
CHLOROBENZENE	20	49.6	0.8%	1.0	1.04	4.0%
ETHYLBENZENE	20	50.6	1.2%	1.0	1.00	%0.0
TOLUENE	20	46.7	9.9%	1.0	1.23	23.0%
m&p-XYLENES	100	102	2.0%	2.0	2.11	5.5%
0-XYLENE	20	49.5	1.0%	1.0	0.84	16.0%
ANALYSES PERFORMED ON-SITE IN CA DOHS MO	IOBILE LABORATORY #1561	#1561		! !		

ANALYSES PERFORMED BY: MARK BURKE DATA REVIEWED BY: TAMARA DAVIS

DATE: 08/18/03	CAI IRRATION	CAI IRRATION VERIEICATION	NO	
HP Labs Project #GF081803-1 6	SI PPI V SOL	RCF. SCIPEL	SUPPLY SOURCE: SUPELION OT #1 SS-773	
Lab 6	INSTRUMENT:	r. AGILENT	3850 GC / 5973 M	AGILENT 6850 GC / 5973 MASS SPECTROMETER
		S	CONTINUING STANDARD	ARD
COMPOUND	MASS	R	RESULT	%DIFF
CARBON TETRACHLORIDE	20	7.7	50.3	%9.0
CHLOROFORM	20	7.1	50.4	0.8%
1,1-DICHLORO ETHANE	20	5.7	52.3	4.6%
1,2-DICHLORO ETHANE	20	8.0	53.6	7.2%
1,1-DICHLORO ETHENE	20	4.1	47.3	5.4%
CIS-1,2-DICHLORO ETHENE	20	6.5	48.7	2.6%
TRANS-1,2-DICHLORO ETHENE	20	5.1	50.6	1.2%
DICHLOROMETHANE	20	4.8	50.1	0.2%
TETRACHLORO ETHENE	20	12.9	50,0	%0:0
1,1,1,2-TETRACHLORO ETHANE	20	15,2	53.8	7.6%
₹	20	18.3	51.7	3.4%
1,1,1-TRICHLORO ETHANE	20	7.4	48.7	2.6%
1,1,2-TRICHLORO ETHANE	20	12.6	49.4	1.2%
TRICHLORO ETHENE	20	9.1	43.9	12.2%
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	20	4.1	56.4	12.8%
BENZENE	20	7.9	52.8	5.6%
CHLOROBENZENE	20	14.9	50.5	1.0%
ETHYLBENZENE	20	15.2	51.9	3.8%
TOLUENE	20	11.6	49.3	1.4%
m&p-XYLENES	100	15.5	106	5.9%
o-XYLENE	20	16.5	50.9	1.8%
ANALYSES PERFORMED ON-SITE IN DOHS CERTIFIED MOBILE I ABORATORY (CERT #1561)	IFD MORII F 1 4	RORATORY	(CERT #1561)	

DATE: 08/19/03	CALIBRATION	CALIBRATION VERIFICATION	Z	
HP Labs Project #GF081803-L6	SUPPLY SOU	RCE: SUPELC	SUPPLY SOURCE: SUPELCO LOT #LSS-773	
Lab 6	INSTRUMENT		350 GC / 5973 MA	AGILENT 6850 GC / 5973 MASS SPECTROMETER
		CONT	CONTINUING STANDARD	\RD
COMPOUND	MASS	RT	RESULT	%DIFF
CARBON TETRACHLORIDE	90	7.7	53.6	7.2%
CHLOROFORM	20	7.1	53.9	7.8%
1,1-DICHLORO ETHANE	20	5.7	56.2	12.4%
1,2-DICHLORO ETHANE	20	8.0	55.8	11.6%
1,1-DICHLORO ETHENE	20	4.1	51.2	2.4%
CIS-1,2-DICHLORO ETHENE	20	6.5	50.1	0.2%
TRANS-1,2-DICHLORO ETHENE	20	5.1	53.6	7.2%
DICHLOROMETHANE	20	4.8	53.3	%9.9
TETRACHLORO ETHENE	20	12.9	52.7	5.4%
1,1,1,2-TETRACHLORO ETHANE	20	15.2	57.4	14.8%
1,1,2,2-TETRACHLORO ETHANE	20	18.3	48.5	3.0%
1,1,1-TRICHLORO ETHANE	20	7.4	52.2	4.4%
1,1,2-TRICHLORO ETHANE	20	12.6	51.7	3.4%
TRICHLORO ETHENE	20	9.1	47.8	4.4%
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	50	4.1	62.1	24.2%
BENZENE	20	7.9	56.7	13.4%
CHLOROBENZENE	20	14.9	53.2	6.4%
ETHYLBENZENE	20	15.2	55.6	11.2%
TOLUENE	20	11.6	50.7	1.4%
m&p-XYLENES	100	15.5	118	18.0%
o-XYLENE	50	16.5	54.9	9.8%
ANALYSES PERFORMED ON-SITE IN DOHS CERTIFIED MOBILE I ABORATORY (CERT #156)	IFD MOBILE 1	N VAUTABOR	FDT #1561)	

DATE: 08/20/03	CALIBRATIO	CALIBRATION VERIFICATION	Z		21
HP Labs Project #GF081803-L6	SUPPLY SOU	JRCE: SUPELC	SUPPLY SOURCE: SUPELCO LOT #LSS-773		
Lab 6	INSTRUMENT:		350 GC / 5973 MA	AGILENT 6850 GC / 5973 MASS SPECTROMETER	
		CONT	CONTINUING STANDARD	RD	
COMPOUND	MASS	R	RESULT	%DIFF	
CARBON TETRACHLORIDE	20	7.7	50.9	1.8%	
CHLOROFORM	20	7.1	50.2	0.4%	
1,1-DICHLORO ETHANE	20	5.7	51.7	3.4%	
1,2-DICHLORO ETHANE	20	8.0	52.9	5.8%	
1,1-DICHLORO ETHENE	20	4.1	48.4	3.2%	
CIS-1,2-DICHLORO ETHENE	20	6.5	49.8	0.4%	
TRANS-1,2-DICHLORO ETHENE	20	5.1	50.6	1.2%	
DICHLOROMETHANE	20	4.8	49.6	0.8%	
TETRACHLORO ETHENE	20	12.9	49.1	1.8%	
1,1,1,2-TETRACHLORO ETHANE	20	15.2	50.6	1.2%	
1,1,2,2-TETRACHLORO ETHANE	20	18.3	49.0	2.0%	
1,1,1-TRICHLORO ETHANE	20	7.4	50.3	0.6%	
1,1,2-TRICHLORO ETHANE	20	12.6	48.8	2.4%	
TRICHLORO ETHENE	20	9.1	47.6	4.8%	
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	50	4.1	52.3	4.6%	
BENZENE	20	6.7	52.7	5.4%	
CHLOROBENZENE	20	14.9	49.7	0.6%	
ETHYLBENZENE	20	15.2	53.4	6.8%	
TOLUENE	20	11.6	51.8	3.6%	
m&p-XYLENES	100	15.5	113	13.1%	
o-XYLENE	50	16.5	54.3	8.6%	
ANALYSES PERFORMED ON-SITE IN DOHS CERTIFIED MOBILE LABORATORY (CERT #156)	FD MORIFE I	NACRATORY (FPT #1561)		11

DATE: 00/04/00				
UAIE: 00/21/03	CALIBRA I LON VERIFICA I LON	VERFICATI	S	
HP Labs Project #GF081803-L6	SUPPLY SOU	RCE: SUPEL(SUPPLY SOURCE: SUPELCO LOT #LSS-773	က
Lab 6	INSTRUMENT:		850 GC / 5973 M	AGILENT 6850 GC / 5973 MASS SPECTROMETER
		NOO	CONTINUING STANDARD	ARD
COMPOUND	MASS	RT	RESULT	%DIFF
CARBON TETRACHLORIDE	20	7.7	55.5	11.0%
CHLOROFORM	20	7.1	54.1	8.2%
1,1-DICHLORO ETHANE	20	5.7	29.7	13.4%
1,2-DICHLORO ETHANE	20	8.0	56.8	13.6%
1,1-DICHLORO ETHENE	20	4.1	49.6	0.8%
CIS-1,2-DICHLORO ETHENE	20	6.5	51.1	2.2%
TRANS-1,2-DICHLORO ETHENE	20	5.1	54.5	%0.6
DICHLOROMETHANE	20	4.8	54.1	8.2%
TETRACHLORO ETHENE	20	12.9	54.0	8.0%
1,1,1,2-TETRACHLORO ETHANE	20	15.2	58.0	16.0%
1,1,2,2-TETRACHLORO ETHANE	20	18.3	50.8	1.6%
1,1,1-TRICHLORO ETHANE	20	7.4	52.7	5.4%
1,1,2-TRICHLORO ETHANE	20	12.6	53.2	6.4%
TRICHLORO ETHENE	20	9.1	46.1	7.8%
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	50	4.1	62.7	25.4%
BENZENE	20	7.9	58.0	16.0%
CHLOROBENZENE	20	14.9	53.1	6.2%
ETHYLBENZENE	20	15.2	55.1	10.2%
TOLUENE	20	11.6	51.3	2.6%
m&p-XYLENES	100	15.5	112	12.0%
o-XYLENE	50	16.5	52.1	4.2%
ANALYSES PERFORMED ON-SITE IN DOHS CERTIFIED MORII E I		ACT AGOR	ARORATORY (CERT #1561)	

DATE: 08/22/03	CALIBRATION VERIFICATION	VERIFICAT	NO	
HP Labs Project #GF081803-L6	SUPPLY SOU	RCE: SUPEL	SUPPLY SOURCE: SUPELCO LOT #LSS-773	en
Lab 6	INSTRUMENT:	r: AGILENT	6850 GC / 5973 M	AGILENT 6850 GC / 5973 MASS SPECTROMETER
		S	CONTINUING STANDARD	ARD
COMPOUND	MASS	RT	RESULT	%DIFF
CARBON TETRACHLORIDE	20	7.7	54.1	8.2%
CHLOROFORM	20	7.1	52.9	5.8%
1,1-DICHLORO ETHANE	20	5.7	56.4	12.8%
1,2-DICHLORO ETHANE	20	8.0	56.0	12.0%
1,1-DICHLORO ETHENE	20	4.1	52.8	5.6%
CIS-1,2-DICHLORO ETHENE	20	6.5	51.3	2.6%
TRANS-1,2-DICHLORO ETHENE	20	5.1	54.4	8.8%
DICHLOROMETHANE	20	4.8	54.3	8.6%
TETRACHLORO ETHENE	20	12.9	52.2	4.4%
1,1,1,2-TETRACHLORO ETHANE	20	15.2	54.7	9.4%
1,1,2,2-TETRACHLORO ETHANE	20	18.3	49.8	0.4%
1,1,1-TRICHLORO ETHANE	20	7.4	51.6	3.2%
1,1,2-TRICHLORO ETHANE	20	12.6	51.7	3.4%
TRICHLORO ETHENE	20	9.1	48.0	4.0%
DICHLORODIFLUOROMETHANE (FR12)	20	3.6	47.8	4.4%
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	20	4.1	61.4	22.8%
BENZENE	20	7.9	58.4	16.8%
CHLOROBENZENE	20	14.9	52.1	4.2%
ETHYLBENZENE	20	15.2	56.3	12.6%
TOLUENE	20	11.6	54.5	%0.6
m&p-XYLENES	100	15.5	117	17.0%
0-XYLENE	50	16.5	55.2	10.4%
ANAL VSES DEDECTORNED ON SITE IN DOUG CEDITIFIED MODIL	-	ンロのよくひのよく	(VUL) #4664)	

DATE: 08/25/03	CALIBRATION VERIFICATION	I VERIFICATION	NO	
HP Labs Project #GF081803-L6 ମନ୍ତ	SUPPLY SOU	RCE: SUPEL(SUPPLY SOURCE: SUPELCO LOT #LSS-773	
Lab o			CONTINUING STANDARD	AGILEN I 0830 GC / 3973 MASS SPECTRUMETER CONTINUING STANDARD
COMPOUND	MASS	RT	RESULT	%DIFF
CARBON TETRACHLORIDE	20	7.7	54.2	8.4%
CHLOROFORM	20	7.1	53.1	6.2%
1,1-DICHLORO ETHANE	20	5.7	54.8	%9.6
1,2-DICHLORO ETHANE	20	8.0	55.2	10.4%
1,1-DICHLORO ETHENE	20	4.1	50.3	%9:0
CIS-1,2-DICHLORO ETHENE	20	6.5	50.8	1.6%
TRANS-1,2-DICHLORO ETHENE	20	5.1	54.2	8.4%
DICHLOROMETHANE	20	4.8	54.8	9.6%
TETRACHLORO ETHENE	20	12.9	53.8	7.6%
1,1,1,2-TETRACHLORO ETHANE	20	15.2	58.3	16.6%
¥	20	18.3	54.6	9.2%
1,1,1-TRICHLORO ETHANE	20	7.4	52.4	4.8%
1,1,2-TRICHLORO ETHANE	20	12.6	51.1	2.2%
TRICHLORO ETHENE	20	9.1	47.3	5.4%
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	50	4.1	61.7	23.4%
BENZENE	20	7.9	56.4	12.8%
CHLOROBENZENE	20	14.9	54.1	8.2%
ETHYLBENZENE	20	15.2	56.4	12.8%
TOLUENE	20	11.6	55.2	10.4%
m&p-XYLENES	100	15.5	118	18.0%
o-XYLENE	50	16.5	55.6	11.2%
ANALYSES PERFORMED ON-SITE IN DOHS CERTIFIED MOBILE I ABORATORY (CERT #1561	ED MOBILE I A	BORATORY (CFRT #1561)	

SOIL GAS INITIAL LCS STANDARD REPORT (CALIBRATION VERIFICATION)

LAB: Lab 6

SUPPLY SOURCE: SUPELCO LOT #LSS-774

INSTRUMENT: AGILENT 6850 GC / 5973 MASS SPECTROMETER

COMPOUND	CAL DATE	MASS	RT	RESULT	%DIFF
		<u> </u>			
CARBON TETRACHLORIDE	8/12/2003	50	8.5	49.5	1.0%
CHLOROFORM	8/12/2003	50	8.1	47.9	4.2%
1,1-DICHLORO ETHANE	8/12/2003	50	7.4	49.0	2.0%
1,2-DICHLORO ETHANE	8/12/2003	50	8.6	49.0	2.0%
1,1-DICHLORO ETHENE	8/12/2003	50	6.4	43.9	12.2%
CIS-1,2-DICHLORO ETHENE	8/12/2003	50	7.9	49.6	0.8%
TRANS-1,2-DICHLORO ETHENE	8/12/2003	50	7.1	48.6	2.8%
DICHLOROMETHANE	8/12/2003	50	6.8	47.0	6.0%
TETRACHLORO ETHENE	8/12/2003	50	10.8	50.8	1.6%
1,1,1,2-TETRACHLORO ETHANE	8/12/2003	50	11.7	53.9	7.8%
1,1,2,2-TETRACHLORO ETHANE	8/12/2003	50	12.7	51.1	2.2%
1,1,1-TRICHLORO ETHANE	8/12/2003	50	8.4	48.5	3.0%
1,1,2-TRICHLORO ETHANE	8/12/2003	50	10.6	45.3	9.4%
TRICHLORO ETHENE	8/12/2003	50	9.2	47.1	5.8%
1,1,2-TRICHLOROTRIFLUOROETHANE (FR113)	8/12/2003	50	6.3	43.4	13.2%
	-				
BENZENE	8/12/2003	50	8.7	48.6	2.8%
ETHYLBENZENE	8/12/2003	50	11.7	54.9	9.8%
TOLUENE	8/12/2003	50	10.3	47.6	4.8%
m&p-XYLENES	8/12/2003	100	11.7	106.8	6.8%
o-XYLENE	8/12/2003	50	12.2	53.0	6.0%

ANALYSES PERFORMED IN CA DOHS MOBILE LABORATORY #1561

ANALYSES PERFORMED BY: MARK BURKE DATA REVIEWED BY: TAMARA DAVIS